首页> 外文期刊>AIAA Journal >Active Flow Control of a High-Lift Supercritical Airfoil with Microjet Actuators
【24h】

Active Flow Control of a High-Lift Supercritical Airfoil with Microjet Actuators

机译:带有微喷射执行器的高举超临界翼型的主动流控制

获取原文
获取原文并翻译 | 示例
           

摘要

Active flow control has the potential for substantial performance gains and meeting the challenges of next-generation air vehicles. High-lift airfoils employ trailing edge flaps during takeoff and landing, which are stowed during cruise. The present experimental investigation was carried out to examine the active flow control effectiveness on the NASA Energy Efficient Transport airfoil fitted with a simple hinged flap. Experiments were carried out at two flap deflection angles of 20 and 30 degrees at a Reynolds number based on aerodynamic chord of 3.4x105. The microjet parameters varied during this study were the location, orientation, and blowing ratio of the jets. Measurements include velocity and vorticity fields obtained using planar and stereoscopic particle image velocimetry. The baseline flow is separated over a third of the flap at a deflection angle of 20 degrees, and over the entire flap at a deflection angle of 30 degrees. Microjet control is able to completely re-attach the flow at both flap deflection angles and significantly reduce the airfoil drag. The mechanism for control effectiveness is the re-energizing of the boundary layer through the development of counter-rotating vortex pairs.
机译:主动流量控制有可能大幅提高性能并应对下一代航空器的挑战。高升力机翼在起飞和降落期间采用后缘襟翼,并在巡航期间收起。进行本实验研究以检查对装有简单铰接襟翼的NASA高效运输机翼的主动流动控制效果。基于3.4x105的气动弦,以雷诺数在20和30度的两个襟翼偏转角下进行了实验。在这项研究中,微喷头参数有所变化,分别是喷头的位置,方向和吹风比。测量包括使用平面和立体粒子图像测速仪获得的速度场和涡度场。基线流在襟翼的三分之一处以20度的偏转角分离,在整个襟翼中以30度的偏转角分离。 Microjet控制器能够在两个襟翼偏转角处完全重新附着气流,并显着减少了机翼阻力。控制有效性的机制是通过反向旋转涡流对的发展使边界层重新通电。

著录项

  • 来源
    《AIAA Journal》 |2020年第5期|2053-2069|共17页
  • 作者单位

    Florida State Univ Florida Ctr Adv Aeropropuls Florida A&M Univ Coll Engn Tallahassee FL 32310 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号