首页> 外文期刊>AIAA Journal >Bilevel Programming Weight Minimization of Composite Flying-Wing Aircraft with Curvilinear Spars and Ribs
【24h】

Bilevel Programming Weight Minimization of Composite Flying-Wing Aircraft with Curvilinear Spars and Ribs

机译:具有曲线状翼梁和肋的复合式飞行翼飞机的双层编程重量最小化

获取原文
获取原文并翻译 | 示例
           

摘要

This paper studies weight minimization of a composite flying-wing aircraft using bioinspired arbitrarily shaped spars and ribs, known as SpaRibs, for the internal structural layout design. A generalized mathematical model is developed to parameterize the shape of SpaRibs using a four-node nonuniform rational basis spline curve. Additionally, for reducing weight, composite structures and lift redistribution using multiple control surfaces are considered. A stacking sequence table is used to parameterize the wing laminate configuration with ply drops for flexible wing design. For the optimization problem including topology as well as discrete and size design variables, a bilevel programming optimization is employed by using a previously developed parallel particle swarm optimization and a gradient-based optimization, respectively, for the upper- and lower-level optimization problems. The upper-level optimization problem is employed to satisfy such design requirements as the flutter constraints for achieving a specific body freedom flutter mode. The lower-level optimization is used to optimize the control surface rotations to minimize the wing root bending moment, which is considered to be a surrogate for wing weight. Different internal structural layouts and flutter constraints are studied for comparison. Optimization studies show that using SpaRibs for aircraft wing box internal structural layout design can reduce the wing weight by 21.8% as compared to the base model and by 7.3% as compared to the wing box with traditional straight spars and ribs. The additional specific flutter result constraints lead to a 4.2% increase in the wing weight for aircraft design with SpaRibs as compared to the one obtained only with the lower bound on the flutter speed.
机译:本文研究了使用生物启发的任意形状的翼梁和肋骨(称为SpaRibs)进行内部结构布局设计的复合材料飞行机翼的重量最小化。建立了通用的数学模型,以使用四节点非均匀有理基础样条曲线对SpaRibs的形状进行参数化。另外,为了减轻重量,考虑了使用多个控制面的复合结构和提升重分布。堆叠顺序表用于参数化带有层滴的机翼层压板配置,以实现灵活的机翼设计。对于包括拓扑以及离散和大小设计变量在内的优化问题,分别针对上层和下层优化问题,分别使用先前开发的并行粒子群优化和基于梯度的优化来进行双层编程优化。上级优化问题用于满足诸如颤振约束的设计要求,以实现特定的身体自由颤振模式。下层优化用于优化控制面旋转,以最小化机翼根部弯矩,这被认为是机翼重量的替代。为了比较,研究了不同的内部结构布局和颤振约束。优化研究表明,将SpaRibs用于飞机机翼盒的内部结构布局设计,与基本模型相比,可将机翼重量减少21.8%,与传统直梁和肋骨的机翼盒相比,可将机翼重量减少7.3%。与仅在颤振速度下限获得的结果相比,附加的特定颤振结果约束导致采用SpaRibs的飞机设计的机翼重量增加了4.2%。

著录项

  • 来源
    《AIAA Journal》 |2019年第6期|2594-2608|共15页
  • 作者

    Zhao Wei; Kapania Rakesh K.;

  • 作者单位

    Virginia Polytech Inst & State Univ, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA;

    Virginia Polytech Inst & State Univ, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号