首页> 外文期刊>AIAA Journal >Magnetohydrodynamic and Electrohydrodynamic Control of Hypersonic Flows of Weakly Ionized Plasmas
【24h】

Magnetohydrodynamic and Electrohydrodynamic Control of Hypersonic Flows of Weakly Ionized Plasmas

机译:弱电离等离子体的高超声速流的磁流体动力学和电流体动力学控制

获取原文
获取原文并翻译 | 示例
           

摘要

The focus of this work is on theoretical analysis of fundamental aspects of high-speed flow control using electric and magnetic fields. The principal challenge is that the relatively cold gas is weakly ionized in electric discharges or by electron beams, with ionization fraction ranging from 10~(-8) to 10~(-5). The low ionization fraction means that, although electrons and ions can interact with electromagnetic fields, transfer of momentum and energy to or from the bulk neutral gas can be quite inefficient. Analytical estimates show that, even at the highest values of the electric field that can exist in cathode sheaths of electric discharges, electrohydrodynamic, or ion wind, effects in a single discharge can be of significance only in low-speed core flows or in laminar sublayers of high-speed flows. Use of multi-element discharges would amplify the single-sheath effect, so that the cumulative action on the flow can conceivably be made significant. However, Joule heating can overshadow the cathode sheath ion wind effects. Theoretical analysis of magnetohydrodynamic (MHD) flow control with electron beam ionization of hypersonic flow shows that the MHD interaction parameter is a steeply increasing function of magnetic field strength and the flow velocity. However, constraints imposed by arcing between electrode segments can reduce the performance and make the maximum interaction parameter virtually independent of Mach number. Estimates also show that the MHD interaction parameter is much higher near the wall (in the boundary layer) than in the core flow, which may have implications for MHD boundary layer and transition control. The paper also considers "electrodeless" MHD turning and compression of high-speed flows. Computations of a sample case demonstrate that the turning and compression of hypersonic flow ionized by electron beams can be achieved; however, the effect is relatively modest due to low ionization level.
机译:这项工作的重点是对使用电场和磁场进行高速流控制的基本方面进行理论分析。主要挑战在于,相对较冷的气体在放电或电子束中被弱电离,电离分数范围为10〜(-8)至10〜(-5)。低的电离分数意味着,尽管电子和离子可以与电磁场相互作用,但是向或从大量中性气体传递动量和能量的效率可能非常低。分析估计表明,即使在放电,电流体动力学或离子风的阴极护套中可能存在的最高电场值下,单次放电中的影响也仅在低速堆芯流或层状子层中才有意义。高速流动。多元素排放的使用会放大单鞘效应,因此可以想象到,对水流的累积作用会很明显。但是,焦耳加热会掩盖阴极鞘离子风效应。用高超声速流的电子束电离进行磁流体动力学(MHD)流量控制的理论分析表明,MHD相互作用参数是磁场强度和流速的急剧增加的函数。然而,电极段之间的电弧施加的约束会降低性能,并使最大的相互作用参数实际上与马赫数无关。估计还表明,MHD相互作用参数在壁附近(在边界层中)比在岩心流中要高得多,这可能对MHD边界层和过渡控制有影响。本文还考虑了“无电极” MHD转向和高速流的压缩。通过对样品箱的计算表明,可以实现由电子束电离的高超音速流的转向和压缩。但是,由于电离水平低,因此效果相对适中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号