首页> 外文期刊>AIAA Journal >One-Dimensional Multiple-Temperature Gas-Kinetic Bhatnagar-Gross-Krook Scheme for Shock Wave Computation
【24h】

One-Dimensional Multiple-Temperature Gas-Kinetic Bhatnagar-Gross-Krook Scheme for Shock Wave Computation

机译:一维多温度气体动力学Bhatnagar-Gross-Krook方案的冲击波计算

获取原文
           

摘要

Accurately computing the inner structure of normal shock waves or oblique shock waves is crucial for many hypersonic applications. As such, it will improve the prediction accuracy of aerodynamics properties and aerothermal effects on hypersonic vehicles and spacecraft during atmospheric entries. Because a shock wave usually has a thickness of a few mean free paths, it is very difficult to accurately compute the detailed nonequilibrium inner structure across a shock wave with a continuum method. This paper reports a gas-kinetic Bhatnagar-Gross-Krook scheme for computations of one-dimensional vibrationally nonequilibrium nitrogen flows through a planar shock wave. The present gas-kinetic Bhatnagar-Gross-Krook scheme solves for the shock structure with multiple temperatures, including two translational temperatures, one rotational temperature, and one vibrational temperature. The salient features of the present gas-kinetic Bhatnagar-Gross-Krook method are multifold. Its applicability covers a wide simulation regime, extending that of continuum flows to the transition flows; it is more computationally efficient in time than the traditional direct simulation Monte Carlo method for shock wave simulation. To provide proper downstream subsonic boundary conditions for very strong shock waves, it is required to determine a proper postshock equilibrium state in which all temperatures have accomplished relaxation processes to a common equilibrium temperature. Analytical expressions of a complete set of generalized Rankine-Hugoniot relations across a planar shock wave are obtained to account for the variant specific heat ratio due to inner energy excitations. Numerical simulation results by the present gas-kinetic Bhatnagar-Gross-Krook scheme and the direct simulation Monte Carlo method are found to be in good agreement.
机译:准确计算正常冲击波或倾斜冲击波的内部结构对于许多高超声速应用至关重要。这样,它将提高大气进入期间空气动力学特性以及对超音速飞行器和航天器的空气热效应的预测准确性。由于冲击波通常具有几个平均自由程的厚度,因此使用连续谱方法很难精确计算出整个冲击波的详细非平衡内部结构。本文报道了一种气体动力学Bhatnagar-Gross-Krook方案,用于计算一维振动非平衡氮在平面冲击波中的流动。当前的气体动力学Bhatnagar-Gross-Krook方案解决了具有多种温度的冲击结构,包括两个平移温度,一个旋转温度和一个振动温度。本气体动力学Bhatnagar-Gross-Krook方法的显着特征是多重的。它的适用性涵盖了广泛的模拟范围,将连续流的范围扩展到了过渡流;与传统的直接模拟蒙特卡罗方法进行冲击波仿真相比,它在时间上的计算效率更高。为了为非常强的冲击波提供适当的下游亚音速边界条件,需要确定适当的震后平衡状态,在该状态下所有温度均已完成松弛过程,达到共同的平衡温度。获得了在平面冲击波上的一整套广义兰金-休格尼奥特关系的解析表达式,以说明由于内部能量激发而引起的比热比变化。通过目前的气体动力学Bhatnagar-Gross-Krook方案与直接模拟Monte Carlo方法的数值模拟结果被发现是吻合的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号