首页> 外文期刊>AIAA Journal >Triple-Deck Instability of Supersonic Boundary Layers
【24h】

Triple-Deck Instability of Supersonic Boundary Layers

机译:超音速边界层的三层不稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

The purpose of the present study is to resolve a long-standing paradox intrinsic to the triple-deck theory that predicts stability of a supersonic boundary layer against two-dimensional disturbances for all Mach numbers M∞ > 1 of the oncoming stream. Thorough investigation of disturbances in the transonic range of velocities results in a new interaction law and points to the formation of an additional stable mode missing from incompressible and subsonic flows. At some value of the transonic similarity parameter K∞ the new mode "collides" in an auxiliary complex plane composed of the disturbance frequencies and wave numbers with the conventional Tollmien-Schlichting unstable mode typical of two-dimensional waves in incompressible and subsonic regimes. As a result, the mode exchange takes place and the new mode continues after collision as an unstable one. A rigorous proof of the existence of the neutral frequencies and wave numbers for arbitrary values of K∞ substantiates this conclusion. In the limit, as K∞ → ∞, the interactive boundary layer turns to the classical boundary layer by Prandtl extending over the reference length of developing viscous flow.
机译:本研究的目的是解决三层理论固有的长期悖论,该论证预测来水的所有马赫数M∞> 1时超音速边界层对二维扰动的稳定性。彻底研究跨音速速度范围内的扰动会产生新的相互作用定律,并指出不可压缩和亚音速流缺少额外的稳定模式。在跨音速相似性参数K∞的某个值处,新模式在由干扰频率和波数组成的辅助复平面中与“不可压缩和亚音速”状态下典型二维波的传统Tollmien-Schlichting不稳定模式相撞。结果,发生模式交换,并且新模式在碰撞后作为不稳定的模式继续进行。对K∞任意值存在中性频率和波数的严格证明进一步证实了这一结论。在极限条件下,当K∞→∞时,交互式边界层通过Prandtl扩展到经典边界层,并在发展的粘性流的参考长度上延伸。

著录项

  • 来源
    《AIAA Journal》 |2012年第8期|p.1733-1741|共9页
  • 作者

    Oleg S. Ryzhov;

  • 作者单位

    Rensselaer Polytechnic Institute, Troy, New York 12180;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号