首页> 外文期刊>AIAA Journal >Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study
【24h】

Design and Characterization of High-Bandwidth, Resonance Enhanced Pulsed Microactuators: A Parametric Study

机译:高带宽,共振增强型脉冲微执行器的设计和表征:参数研究

获取原文
获取原文并翻译 | 示例
           

摘要

An extensive study on a microactuator that can generate high-momentum, high-frequency perturbations over a large bandwidth is presented in this paper. Such an actuator can potentially be used for the active control of various shear and boundary-layer flows that involve separation, mixing, and noise generation. The resonance enhanced microjet actuator described in this paper is a simple microfluidic system consisting of an underexpanded source jet flowing into a specially configured cavity integrated with multiple micronozzles, through which unsteady pulsed supersonic jets issue. The resonance frequency of these microjets could be varied over a large range (approximately 1-60 kHz) by changing the geometric and flow parameters of the microactuator system. Mean and unsteady properties of the microactuator are examined, including time-resolved flow visualizations and synchronous pressure and noise measurements; collectively, they provide a better understanding of the actuator dynamics. The present study also explores the design space and performance, as well as some of the design limitations of this actuator. Based on this parametric, a correlation is suggested that may be used for designing such actuators for various applications.
机译:本文提出了对微致动器的广泛研究,该微致动器可以在较大带宽上产生高动量,高频扰动。这样的致动器可以潜在地用于主动控制涉及分离,混合和噪声产生的各种剪切和边界层流。本文中描述的增强共振的微射流致动器是一个简单的微流体系统,由一个未充分膨胀的源射流组成,该射流流入带有多个微喷嘴的特殊配置腔中,不稳定的超音速射流通过该射流发出。通过更改微执行器系统的几何参数和流量参数,可以在较大范围(大约1-60 kHz)内改变这些微喷的共振频率。检查了微执行器的平均和非稳态特性,包括时间分辨的流量可视化以及同步的压力和噪声测量;总之,它们可以更好地了解执行器的动力学特性。本研究还探讨了该执行器的设计空间和性能以及一些设计局限性。基于该参数,建议可以用于设计用于各种应用的这种致动器的相关性。

著录项

  • 来源
    《AIAA Journal》 |2013年第2期|386-396|共11页
  • 作者单位

    Florida A&M University and Florida State University, Tallahassee, Florida 32310;

    Florida A&M University and Florida State University, Tallahassee, Florida 32310;

    Florida A&M University and Florida State University, Tallahassee, Florida 32310;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号