首页> 外文期刊>AIAA Journal >Using Dynamical Systems Concepts in Multidisciplinary Design
【24h】

Using Dynamical Systems Concepts in Multidisciplinary Design

机译:在多学科设计中使用动力系统概念

获取原文
获取原文并翻译 | 示例
           

摘要

A general multidisciplinary design problem features coupling and feedback between contributing analyses. This feedback may lead to convergence issues requiring significant iteration to obtain a feasible design. This work casts the multidisciplinary design problem as a dynamical system to leverage the benefits of dynamical systems theory in a new domain. Three areas from dynamical system theory are chosen for investigation: stability analysis, optimal control, and estimation theory. Stability analysis is used to investigate the existence of a solution to the design problem. Optimal control techniques allow the requirements associated with the design to be incorporated into the system and allow for constraints that are functions of both the contributing analysis outputs and input values to be handled simultaneously. Finally, estimation methods are employed to evaluate the robustness of the multidisciplinary design. These three dynamical system techniques are then combined in a methodology for the rapid robust design of linear multidisciplinary systems. The developed robust design methodology allows for uncertainty within the models as well across the parameters of the multidisciplinary problem and shows extensibility to nonlinear systems. Although viewing the multidisciplinary design optimization problem as a dynamical system is natural for designs in which there are contributing analyses defined by dynamic equations, this approach is shown to be applicable to general problems where the contributing analysis output is algebraic. The applicability and performance of the developed technique is demonstrated through linear and nonlinear example problems.
机译:一个通用的多学科设计问题的特征在于贡献分析之间的耦合和反馈。此反馈可能会导致收敛问题,需要进行大量迭代才能获得可行的设计。这项工作将多学科设计问题投射为动力系统,以在新的领域中利用动力系统理论的优势。从动力学系统理论中选择了三个领域进行研究:稳定性分析,最优控制和估计理论。稳定性分析用于调查设计问题解决方案的存在。最佳控制技术允许将与设计相关的要求合并到系统中,并允许同时处理作为贡献分析输出和输入值的函数的约束。最后,采用估计方法来评估多学科设计的鲁棒性。然后将这三种动力系统技术组合在一起,以一种方法进行线性多学科系统的快速鲁棒设计。发达的稳健设计方法可在模型内以及跨学科问题的参数之间实现不确定性,并显示出对非线性系统的可扩展性。尽管将多学科设计优化问题视为动态系统对于其中包含由动态方程式定义的影响分析的设计是很自然的事情,但该方法已显示出可用于影响分析输出为代数的一般问题。通过线性和非线性示例问题证明了所开发技术的适用性和性能。

著录项

  • 来源
    《AIAA Journal》 |2014年第6期|1265-1279|共15页
  • 作者单位

    Georgia Institute of Technology, Atlanta, Georgia 30332-0150,Guggenheim School of Aerospace Engineering;

    Georgia Institute of Technology, Atlanta, Georgia 30332-0150,David and Andrew Lewis of Space Technology, Guggenheim School of Aerospace Engineering;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号