首页> 外文期刊>AIAA Journal >Thermomechanical Concepts and Modeling for Stability Physics in Liquid-Propellant Rocket Engines
【24h】

Thermomechanical Concepts and Modeling for Stability Physics in Liquid-Propellant Rocket Engines

机译:液体推进火箭发动机稳定性物理的热力学概念和建模

获取原文
获取原文并翻译 | 示例
           

摘要

Thermomechanical concepts and modeling are used to describe the response of inert and reactive gases to transient, spatially resolved thermal energy deposition. The ultimate goal is to establish the cause-effect relationship between combustion-generated energy deposition and the mechanical disturbances responsible for operationally observed pressure oscillations in liquid-propellant rocket engine combustion chambers as well as to identify physical processes that convert thermal energy to kinetic energy. Asymptotic formulations of the nondimensional describing transient conservation equations for both inert and reactive gases are used to identify nondimensional parameters that characterize fundamental physics occurring as the gas responds to localized heating. The characteristics of the responses depend upon the magnitudes of the suite of parameters. Some are described by hyperbolic partial differential equations; others involve either nearly constant density or nearly isobaric phenomena. Thermomechanical concepts are used to explain how initially imposed small pressure, density, temperature, and velocity disturbances can be the sources of a thermal response that evolves to relatively larger thermomechanical disturbances. The competition between localized, spatially distributed chemical energy addition from a highactivation-energy, one-step, Arrhenius reaction and compressibility effects associated with localized gas compression/expansion is the driver for diverse outcomes. Sufficiently robust thermal energy addition can cause a thermal explosion after an induction time period, followed by relatively large changes in the thermodynamic variables and induced velocity (instability) on a time scale exponentially short compared to that of the induction time.
机译:热力学概念和建模用于描述惰性气体和反应性气体对瞬态,空间分辨的热能沉积的响应。最终目标是建立燃烧产生的能量沉积与负责在液体推进剂火箭发动机燃烧室内观察到的压力振荡的机械干扰之间的因果关系,并确定将热能转换为动能的物理过程。描述惰性气体和反应性气体的暂态守恒方程的无量纲的渐近公式用于确定无量纲参数,这些参数表征了随着气体对局部加热的响应而发生的基本物理现象。响应的特征取决于参数组的大小。有些是用双曲型偏微分方程描述的。其他涉及密度几乎恒定或等压现象。热力学概念用于解释最初施加的小压力,密度,温度和速度扰动如何成为热响应的源头,而热响应会演变为相对较大的热机械扰动。高活化能,一步法,阿累尼乌斯反应和与局部气体压缩/膨胀相关的可压缩性效应之间的局部空间分布化学能添加之间的竞争是各种结果的驱动力。与感应时间相比,足够强大的热能添加会在感应时间段之后引起热爆炸,随后在相对于感应时间呈指数级缩短的时间尺度上,热力学变量和感应速度(不稳定性)的变化较大。

著录项

  • 来源
    《AIAA Journal》 |2017年第6期|2043-2051|共9页
  • 作者

    Kassoy D. R.;

  • 作者单位

    Univ Colorado, Dept Mech Engn, Boulder, CO 80309 USA|Kassoy Innovat Sci Solut, Boulder, CO 80305 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号