...
首页> 外文期刊>Aerospace science and technology >Buffet and buffeting control in transonic flow
【24h】

Buffet and buffeting control in transonic flow

机译:跨音速流动的自助和自助控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In transonic flow conditions, the shock wave/turbulent boundary layer interaction and the flow separations on the upper wing surfaces of a civil aircraft induce flow instabilities, "buffet" and then structural vibrations, "buffeting". Buffeting can greatly affect aerodynamic behavior. The buffeting phenomenon appears when the aircraft's Mach number or angle of attack increases. This phenomenon limits the aircraft's flight envelope. The objectives of this study are to cancel out or decrease the aerodynamic instabilities (unsteady separation, movement of the shock position) due to this type of flow by using control systems. The following actuators can be used, "Vortex Generators" situated upstream of the shock location and a new moving part designed by ONERA, situated at the trailing edge of the wing, the "Trailing Edge Deflector" or TED. It looks like an adjustable "Divergent Trailing Edge". It is an active actuator and can take different deflections or be driven by dynamic movements up to 250 Hz. Tests were performed in transonic 2D and 3D flow with models well equipped with unsteady pressure transducers. For high lift coefficients, selected deflections of the "Trailing Edge Deflector" increase the wing's aerodynamic performances and delays the onset of "buffet". Furthermore, in 2D flow "buffet" condition, the "Trailing Edge Deflector", driven by a closed-loop active control using the measurements of the unsteady wall static pressures, can greatly reduce "buffet". In 3D flow "buffeting" conditions, the 2D flow control principle is available but some differences must be considered. Vortex generators have a great impact on the separated flows. The separated flow instabilities are greatly reduced and the buffet is totally controlled even for strong instabilities. The aerodynamic performances of the airfoil are also greatly improved.
机译:在跨音速流动条件下,冲击波/湍流边界层的相互作用以及民用飞机上机翼表面的流动分离会引起流动不稳定性,即“自燃”,然后引起结构振动“起泡”。抖振会极大地影响空气动力学行为。当飞机的马赫数或迎角增加时,就会出现抖振现象。这种现象限制了飞机的飞行包线。这项研究的目的是通过使用控制系统消除或减少由于这种类型的流动而引起的空气动力学不稳定性(不稳定的分离,冲击位置的移动)。可以使用以下执行器,位于冲击位置上游的“涡流发生器”和位于机翼后缘的由ONERA设计的新运动部件,即“后缘偏转器”或TED。它看起来像一个可调的“发散后沿”。它是一个主动致动器,可以发生不同的偏转,也可以通过高达250 Hz的动态运动来驱动。测试在配备了非稳态压力传感器的模型上以跨音速2D和3D流动进行。对于高升力系数,“后缘偏转器”的选定偏转可提高机翼的空气动力学性能,并延迟“自助餐”的发作。此外,在2D流动“自助餐”条件下,由“闭环主动控制”通过使用非稳态壁静压力的测量值进行的闭环主动控制驱动,可以大大减少“自助餐”。在3D流量“起泡”条件下,可以使用2D流量控制原理,但必须考虑一些差异。涡流发生器对分离的气流有很大的影响。分离的流动不稳定性大大降低,并且即使对于强烈的不稳定性,也可以完全控制自助餐。翼型的空气动力学性能也大大提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号