首页> 外文期刊>Aerospace science and technology >Designing against severe stresses at compound cooling holes of double wall transpiration cooled engine components
【24h】

Designing against severe stresses at compound cooling holes of double wall transpiration cooled engine components

机译:双壁蒸腾冷却发动机部件复合冷却孔的严重应力设计

获取原文
获取原文并翻译 | 示例
           

摘要

Advanced thermal protection technology is key for allowing hotter gas turbine cycle temperatures towards minimising fuel consumption and emissions. While effusion holes are essential for reducing heat flux into the structure through the formation of an air cool layer between the hot gas flow and the solid, they can shorten component life due to local stress raising effects. Through Finite Element (FE) analysis, we evaluate the severity of these effects in double wall transpiration cooling (DWTC) systems under thermal loading and identify how mechanical performance can be improved by modifying global and local geometric features. Increasing effusion hole inclination to 60 degrees to the surface normal leads to extreme stress concentration factors (SCFs), which can exceed 5. Eliminating ellipticity in the effusion hole surface is shown to offer enormous performance benefits, by decreasing the SCF by 50%. A narrow spacing between the wall-connecting pedestals implies shorter hole-hole and hole-pedestal distances, which also leads to a reduction of SCFs. Our elastic solutions can be readily used in fatigue life calculations based on Neuber type local strain approaches. They also establish the basis for understanding the response of the new systems under combined thermal-mechanical loading. (c) 2021 Elsevier Masson SAS. All rights reserved.
机译:先进的热保护技术是允许更热的燃气涡轮机循环温度以最小化燃料消耗和排放的关键。虽然穿透孔是必不可少的,用于通过在热气流和固体之间形成空气冷却层来将热通量减少到结构中,它们可以由于局部应力提高效应而缩短组分寿命。通过有限元(FE)分析,我们在热负荷下评估双壁蒸腾冷却(DWTC)系统中这些效果的严重程度,并通过改变全局和局部几何特征来提高机械性能。将流量孔倾斜度增加到60度到表面正常导致极端应力集中因子(SCF),其可能超过5.消除了积液孔表面中的椭圆形,通过将SCF降低50%,可以提供巨大的性能益处。壁连接基座之间的窄间距意味着较短的孔洞和孔基座距离,这也导致SCF的减少。我们的弹性解决方案可以很容易地用于基于Neuber型局部应变方法的疲劳寿命计算。他们还建立了理解新系统在综合热机械荷载下的响应的基础。 (c)2021 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号