首页> 外文期刊>Aerospace science and technology >Robust adaptive fuzzy sliding mode control of nonlinear uncertain MIMO fluttering FGP plate based on feedback linearization
【24h】

Robust adaptive fuzzy sliding mode control of nonlinear uncertain MIMO fluttering FGP plate based on feedback linearization

机译:基于反馈线性化的非线性不确定MIMO飘动FGP板的鲁棒自适应模糊滑模控制

获取原文
获取原文并翻译 | 示例
       

摘要

In this study using an adaptive fuzzy sliding mode control (AFSMC) scheme, the robust stabilization of multi-input-multi-output (MIMO) nonlinear aero-elastic fluttering of the Functionally Graded Piezoelectric (FGP) plate in the presence of mismatched time-varying uncertainties have been investigated. It is assumed that the aerodynamic load is modeled by the first order piston theory and the piezoelectric patches are assumed to be bonded to the top and bottom surfaces of the plate in order to produce the controlling bending moment excitations. Using the airy stress function and applying the Hamilton's principle the governing coupled partial differential equations of motion are derived. Then considering the immovable simply supported edges boundary conditions and employing the aero-elastic multi-mode interactions and applying the Galerkin's method, the nonlinear coupled partial differential equations of motion are reduced to nonlinear ordinary differential equations in time. Then using the full state input-output feedback linearization technique, the nonlinear dynamics of the model is linearized and transformed into the multiple decupled single input-single output uncertain subsystems. In order to overcome the chattering phenomenon arises due to the sliding mode control (SMC) discontinuous inputs, a hybrid adaptive fuzzy sliding mode control technique is utilized to approximate the discontinuous synthetic control inputs. It is showed that considering the physical input limitations, the designed AFSMC control system, effectively suppress the fluttering motions in presence of the bounded external inaccuracies and it prevents the unwanted chattering of the subsystems inputs. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:在该研究中,使用自适应模糊滑模控制(AFSMC)方案,在错配的时间内,功能梯度压电(FGP)板的多输入多输出(MIMO)非线性航空弹性振动的鲁棒稳定性 - 调查了不同的不确定性。假设空气动力学负载由第一阶活塞理论建模,并且假设压电贴片键合到板的顶表面和底表面以产生控制弯矩激励。使用通风应力函数并应用Hamilton原理的管理耦合耦合的偏微分方程是推导的。然后考虑不可移动的简单支持的边缘边界条件并采用航空弹性多模相互作用并应用Galerkin的方法,在时间内将非线性耦合的部分微分方程减少到非线性常微分方程。然后使用完整状态输入输出反馈线性化技术,模型的非线性动态线性化并转换为多个Decupled单输入单输出不确定子系统。为了克服抖动的现象,由于滑模控制(SMC)不连续输入,利用混合自适应模糊滑模控制技术来近似于不连续的合成控制输入。结果表明,考虑到物理输入限制,设计的AFSMC控制系统,有效地抑制了有界外部不准确的存在下的浮动运动,并且它防止了子系统输入的不需要的抖动。 (c)2019年Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号