首页> 外文期刊>Aerospace science and technology >Fluid-thermal modeling of hypersonic vehicles via a gas-kinetic BGK scheme-based integrated algorithm
【24h】

Fluid-thermal modeling of hypersonic vehicles via a gas-kinetic BGK scheme-based integrated algorithm

机译:基于气体动力学BGK方案的集成算法流体 - 热建造超声型车辆

获取原文
获取原文并翻译 | 示例
           

摘要

In our previous paper (doi: 10.1016/j.ijheatmasstransfer.2019.119016), the gas-kinetic BGK scheme was used to simulate both hypersonic flow and structural heat transfer, between which loose coupling was adopted for solving two-dimensional fluid-thermal problems. To model the unitive and continuous fluid thermal processes more actually, this paper presents a BGK scheme-based integrated algorithm and the research object is extended to three-dimensional hypersonic vehicles. To start with, an appropriate BGK model is constructed for the unified macroscopic governing equations, the effectiveness of which is verified by the Chapman-Enskog expansion analysis. Then following similar procedures in the original scheme, the gas distribution function at each cell interface is derived, from which the numerical fluxes can be evaluated. The dual-time stepping approach, together with an implicit JFNK-BGK method, is applied to efficiently obtain time-accurate solutions. With an effective parallelization strategy that is in line with the integrated algorithm, the computational efficiency is improved. As another aspect which distinguishes from the loosely-coupled methods, the fluid-structure interface conditions are also addressed. For validation, several test cases are investigated, including an individual hypersonic flow, an individual transient heat transfer, and two fluid-thermal problems. By comparison with other methods and analysis of the computed results, features of the developed method are demonstrated. (C) 2020 Elsevier Masson SAS. All rights reserved.
机译:在我们之前的论文中(DOI:10.1016 / J.IJHeatMasstransfer.2019.119016),用于模拟高超声速和结构传热,采用松散耦合来解决二维流体 - 热问题。为了更具体地建模联合和连续流体热过程,本文提出了基于BGK方案的集成算法,研究对象扩展到三维超声波车辆。为了开始,为统一的宏观管理方程构建合适的BGK模型,其有效性由Chapman-Enskog扩展分析验证。然后在原始方案中进行类似的过程,导出每个单元界面处的气体分布函数,可以从中评估数值助熔剂。应用了双时踏步方法以及隐式JFNK-BGK方法,以有效地获得时间准确的解决方案。通过符合集成算法的有效并行化策略,可以提高计算效率。作为区分松散耦合方法的另一方面,还寻址流体结构界面条件。为了验证,研究了几种测试用例,包括单个过度流动,单独的瞬态传热和两个流体热问题。通过与计算结果的其他方法和分析进行比较,证明了开发方法的特征。 (c)2020 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2020年第4期|105748.1-105748.19|共19页
  • 作者单位

    Nanjing Univ Aeronaut & Astronaut Minist Ind & Informat Technol Key Lab Unsteady Aerodynam & Flow Control Nanjing 210016 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Minist Ind & Informat Technol Key Lab Unsteady Aerodynam & Flow Control Nanjing 210016 Jiangsu Peoples R China;

    Nanjing Univ Aeronaut & Astronaut Minist Ind & Informat Technol Key Lab Unsteady Aerodynam & Flow Control Nanjing 210016 Jiangsu Peoples R China;

    Shenyang Aircraft Design & Res Inst Shenyang 110035 Liaoning Peoples R China;

    Shenyang Aircraft Design & Res Inst Shenyang 110035 Liaoning Peoples R China;

    Nanjing Univ Aeronaut & Astronaut State Key Lab Mech & Control Mech Struct Nanjing 210016 Jiangsu Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fluid-thermal modeling; Hypersonic flow; Transient heat transfer; Gas-kinetic scheme; BGK model; Integrated algorithm;

    机译:流体热建模;过度流动;瞬态传热;气体动力学方案;BGK模型;集成算法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号