...
首页> 外文期刊>Aerospace science and technology >Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: An experimental and URANS study
【24h】

Evolution of the flow instabilities in an axial compressor rotor with large tip clearance: An experimental and URANS study

机译:尖端间隙较大的轴向压缩机转子中流动不稳定性的演变:实验和URANS研究

获取原文
获取原文并翻译 | 示例
           

摘要

With modern engine designs trending toward smaller cores to increase propulsive efficiency, the gapto-span ratio in compressors is expected to increase, especially for the rear stages. Detailed knowledge of stronger tip clearance flow and its impact on compressor instability under large clearance condition become increasingly important. The present study is aiming for illuminating the instability evolution and the underlying flow physics in a large-tip-gap compressor, with the use of casing-mounted pressure transducers to acquire the unsteady nature of tip flow, and full-annulus URANS to obtain the three-dimensional flow details related to instability generation. Results show that flow instability evolution of the compressor along speed-line experiences three stages: stable state, rotating instability, and rotating stall. Two critical behaviors of tip leakage vortex (TLV) are found to relate to the transition of instability pattern. As TLV moves to the adjacent blade trailing edge, it starts to oscillate under the interaction with the adjacent blade, leading to a short-length rotating disturbance, i.e. rotating instability. At near-stall condition, as the interface of TLV and main-flow exceeds the passage inlet plane, forward spillage occurs along with radial vortexes periodically shed from blade leading edge. The periodically generation, movement and decay of leading edge vortexes (LEVs) constitute an orderly propagating disturbance rather than evolve into a stall cell. However, as the compressor is further throttled, the orderly propagation of LEVs collapses due to their scattering, resulting in the generation of stall cells with local stronger blockage and higher entropy. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:随着现代发动机设计趋向于较小的核芯以提高推进效率,压缩机中的间隙跨度比有望增加,尤其是对于后级。在大间隙条件下,更强的叶尖间隙流动及其对压缩机不稳定性影响的详细知识变得越来越重要。本研究旨在阐明大型叶尖间隙压缩机的不稳定性演变和潜在的流动物理特性,该方法通过使用安装在套管上的压力传感器来获取叶尖流动的不稳定特性,并使用全环URANS来获得叶尖流动的不稳定性。与不稳定产生有关的三维流细节。结果表明,压缩机沿速度线的流动失稳演化经历三个阶段:稳定状态,旋转失稳和旋转失速。发现尖端泄漏涡(TLV)的两个关键行为与不稳定性模式的转变有关。当TLV移至相邻叶片的后缘时,它在与相邻叶片的相互作用下开始振荡,从而导致短时旋转扰动,即旋转不稳定性。在接近失速的状态下,由于TLV和主流的界面超过了通道入口平面,因此会发生向前溢出,并伴随着从叶片前缘定期掉落的径向涡旋。前缘涡(LEV)的周期性产生,运动和衰减构成有序的传播扰动,而不是演变成失速单元。但是,随着压缩机的进一步节流,LEV的有序传播由于其散射而崩溃,从而导致产生具有局部较强阻塞和较高熵的失速单元。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2020年第1期|105557.1-105557.13|共13页
  • 作者

  • 作者单位

    Northwestern Polytech Univ Sch Power & Energy Xian 710072 Shaanxi Peoples R China;

    Shanghai Jiao Tong Univ Sch Mech Engn Shanghai 200240 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号