首页> 外文期刊>Aerospace science and technology >Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing
【24h】

Control of transitional shock wave boundary layer interaction using structurally constrained surface morphing

机译:使用结构约束表面变形控制过渡冲击波边界层相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

The potential of surface morphing techniques, including passive shock control bumps (SCB) and active surface morphing, is explored to control transitional shock wave boundary layer interactions (SWBLI). In addition to reducing the size of the separation bubble, a key objective is to mitigate the low-frequency unsteadiness that can cause detrimental structural response. To this end, three-dimensional flow simulations are performed using direct numerical simulations (DNS) at Mach 2 and Reynolds number based on inflow boundary layer thickness Re-delta in = 996. An incident oblique shock of angle sigma = 35 deg and strength p2/p1 = 1.4 impinges on a laminar boundary layer that evolves from a Blasius profile. The resulting boundary layer separation leads to transition and a Ganler-like instability is observed; the nominally two-dimensional and steady flow becomes three-dimensional and unsteady. The goal of this work is to develop a surface modification method to mitigate separation and low-frequency unsteadiness, which can trigger structural response and flow distortion. An aero-structural solver framework is developed and employed to examine both passive SCB and active surface morphing. To avoid unrealistic structural deformation in the transient or final states, the structural integrity is concurrently monitored so that the intermediate morphing solutions are restricted to achievable elastic deformations. The results indicate that transitional SWBLI can be controlled in this manner, to essentially inhibit transition and thus eliminate the separation and unsteadiness associated with the Olinler-like vortices. The mechanism modulates sharp increases in surface pressure at separation and shock-impingement locations encountered in uncontrolled SWBLI and results a lower specific entropy rise. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:研究了表面变形技术的潜力,包括被动冲击控制凸点(SCB)和主动表面变形,以控制过渡冲击波边界层相互作用(SWBLI)。除了减小分离气泡的大小外,一个关键目标是减轻可能引起有害结构响应的低频不稳定性。为此,使用直接数值模拟(DNS)在2马赫数和雷诺数的基础上基于流入边界层厚度Re-delta in = 996进行了三维流动模拟。入射角σ= 35度,强度p2的斜向冲击波/ p1 = 1.4撞击从Blasius轮廓演变而来的层状边界层。由此产生的边界层分离导致过渡,并观察到类似Ganler的不稳定性。名义上稳定的二维流动变为不稳定的三维流动。这项工作的目的是开发一种表面改性方法,以减轻可能引起结构响应和流动变形的分离和低频不稳定性。航空结构求解器框架已开发并用于检查被动SCB和主动表面变形。为了避免在过渡或最终状态下出现不切实际的结构变形,应同时监视结构完整性,以便将中间变形解决方案限制为可实现的弹性变形。结果表明,可以以这种方式控制过渡SWBLI,从根本上抑制过渡,从而消除了与Olinler型涡旋相关的分离和不稳定。该机制可调节在不受控制的SWBLI中遇到的分离和冲击冲击位置处表面压力的急剧增加,并导致较低的比熵升高。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号