首页> 外文期刊>Aerospace science and technology >Dynamic mode decomposition analysis of flow characteristics of an airfoil with leading edge protuberances
【24h】

Dynamic mode decomposition analysis of flow characteristics of an airfoil with leading edge protuberances

机译:具有前沿隆起的翼型流动特性的动态模式分解分析

获取原文
获取原文并翻译 | 示例
           

摘要

A numerical investigation of the flow mechanisms and fluctuating aerodynamic performances of an airfoil with leading-edge protuberances is presented within post-stall regime at a Reynolds number of 1.2 x 10(5). In detail, a large eddy simulation (LES) has been conducted and then validated through quantitative comparisons with experimental and numerical results. Furthermore, dynamic mode decomposition (DMD) analysis has been carried out. Superior to the proper orthogonal decomposition (POD) method, DMD could extract mode with single-frequency characteristics. Therefore, the physical backgrounds of corresponding modes could be identified, and the flow control mechanisms could be uncovered, together with the influence on spanwise coherent structures. From the analysis at a streamwise section near laminar separation bubbles (LSB5), it has been found that the improved aerodynamic characteristics at peaks stem from the strong streamwise vortices induced by leading-edge protuberances, which lead to momentum transfer process from troughs to neighboring peaks. Meanwhile, DMD modes corresponding to the shear layers of LSB5 have also been found, and the frequency characteristics are quantitatively depicted. On the other hand, from the analysis at selected lateral slices, the first DMD mode of smooth airfoil case is obviously related with Karman vortex shedding process according to the spatial distribution and frequency characteristics. Although wavy leading-edge causes the breakdown of spanwise coherent structures and the degradation of flow energy, Karman vortex shedding pattern could also be identified at particular troughs in modified airfoil case. (C) 2020 Elsevier Masson SAS. All rights reserved.
机译:在失速后状态下,雷诺数为1.2 x 10(5)时,对具有前沿隆起的翼型的流动机理和波动的空气动力性能进行了数值研究。详细地,已经进行了大涡模拟(LES),然后通过与实验和数值结果的定量比较进行了验证。此外,已经进行了动态模式分解(DMD)分析。 DMD优于适当的正交分解(POD)方法,可以提取具有单频特性的模式。因此,可以识别出相应模式的物理背景,并揭示出流控制机制,以及对跨度相干结构的影响。通过对靠近层流分离气泡(LSB5)的流向截面进行分析,发现峰处改善的空气动力学特性源于前沿隆起引起的强流向涡流,从而导致从谷到相邻峰的动量传递过程。 。同时,还发现了与LSB5的剪切层相对应的DMD模式,并对频率特性进行了定量描述。另一方面,从选择的横向切片的分析来看,根据空间分布和频率特性,光滑翼型情况的第一种DMD模式显然与Karman涡旋脱落过程有关。尽管波浪形的前沿导致翼展方向连贯结构的破坏和流动能量的下降,但在改进型翼型的情况下,也可以在特定的槽中识别出卡曼涡旋脱落模式。 (C)2020年Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology》 |2020年第3期|105684.1-105684.13|共13页
  • 作者

  • 作者单位

    Tianjin Univ Sch Mech Engn Dept Mech Tianjin 300350 Peoples R China|Tianjin Univ Tianjin Key Lab Modern Engn Mech Tianjin 300350 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号