...
首页> 外文期刊>Aerospace science and technology >A new correlation of average temperature and maximum heat flux for turbulent supersonic flow in a large size channel up to Mach 5
【24h】

A new correlation of average temperature and maximum heat flux for turbulent supersonic flow in a large size channel up to Mach 5

机译:高达5马赫的大型通道中湍流超音速流动的平均温度和最大热通量的新关联

获取原文
获取原文并翻译 | 示例

摘要

Supersonic compressible turbulent flow through a large size channel is studied numerically. The flow is modeled by the Favre averaged Navier-Stokes (FANS) equation with k - omega as turbulence model, the resulting governing equations are solved by employing an in-house unsteady state density based solver developed using sixth order accuracy compact finite difference schemes. The effect of Mach number and different wall thermal boundary conditions influencing, the variation of velocity, temperature and density across the channel height are reported in the present study. In the present study, the height of the channel is considered as 10 mm and the bulk Reynolds number is in the range of 3.42 x 10(5) to 1.14 x 10(6) which is higher compared to previous studies. Furthermore, the present Reynolds number represents a fully turbulent flow scenario, common in many aerospace applications. The results indicate that for an adiabatic wall with higher Mach number, there is a substantial increase in the wall temperature. The flow characteristics for a heated wall carried at low and medium Mach numbers indicate that for higher wall temperature, the behaviour of flow characteristics shifts towards that of the adiabatic wall behaviour. However, for higher Mach numbers the flow characteristics behaves like that of isothermal wall condition. In the present work, mathematical correlations for average temperature and maximum heat flux based on the Mach number are developed for adiabatic and isothermal wall conditions, respectively. The present results are validated with direct numerical simulation (DNS) results reported in the literature. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:超音速可压缩湍流通过大尺寸通道的数值研究。用以k-ω为湍流模型的Favre平均Navier-Stokes(FANS)方程对流进行建模,通过采用基于内部非稳态密度的求解器(使用六阶精度紧凑型有限差分方案开发)来求解所得的控制方程。本研究报道了马赫数和不同壁热边界条件的影响,整个通道高度上速度,温度和密度的变化。在本研究中,通道的高度被认为是10 mm,整体雷诺数在3.42 x 10(5)到1.14 x 10(6)的范围内,比以前的研究更高。此外,当前的雷诺数代表了在许多航空航天应用中常见的完全湍流的情况。结果表明,对于马赫数较高的绝热壁,壁温会大幅提高。以低马赫数和中马赫数承载的加热壁的流动特性表明,对于较高的壁温,流动特性的行为向绝热壁行为转移。但是,对于更高的马赫数,流动特性的行为类似于等温壁条件。在本工作中,分别针对绝热和等温壁面条件开发了基于马赫数的平均温度和最大热通量的数学相关性。本结果通过文献中报道的直接数值模拟(DNS)结果进行了验证。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

  • 来源
    《Aerospace science and technology 》 |2020年第1期| 105522.1-105522.12| 共12页
  • 作者

  • 作者单位

    Indian Inst Technol Hyderabad Dept Mech & Aerosp Engn Hyderabad 502285 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Supersonic flow; RANS; Turbulence; CFD; Mach number;

    机译:超音速流;RANS;湍流差价合约马赫数;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号