首页> 外文期刊>Aerospace science and technology >Substructuring verification of a rear fuselage mounted twin-engine aircraft
【24h】

Substructuring verification of a rear fuselage mounted twin-engine aircraft

机译:后机身安装双引擎飞机的子结构验证

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Dynamic substructuring allows for the reduction of large complex structures into substructures to increase computational efficiency and to isolate the local dynamic behaviors of concern. However, errors such as truncation, continuity and rigid body mode errors still limit the applicability of this method experimentally. Additionally, the feasibility of implementing substructuring techniques on finite element models of multi-component fuselage structures has yet to be shown in the literature. The objective of this paper is twofold: first to introduce a feasible substructuring methodology that mitigates the experimental and multi-component limitations with current methods; and secondly, to investigate the modal properties and applicability of substructuring analysis on a rear fuselage mounted twin-engine aircraft. This configuration is not well understood in the literature despite having been shown to have increased interior cabin noise and vibration levels. Experimental validation of the computational model was first performed. A substructuring analysis of the validated computational model produced natural frequencies of the local and global modes that agreed within 6.47% on average, and pseudo-orthogonality terms greater than 0.89 for all modes considered. This methodology proved to be useful for generating an accurate representation of local modes within a global structure for the aircraft configuration studied. This will allow for future work to more thoroughly investigate the local modes using innovative design methods with confidence that the local modes will correlate with the global modes. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:动态子结构允许将大型复杂结构简化为子结构,以提高计算效率并隔离所关注的局部动态行为。但是,诸如截断,连续性和刚体模式错误之类的错误仍然在实验上限制了此方法的适用性。另外,在多部件机身结构的有限元模型上实施子结构技术的可行性尚未在文献中显示。本文的目的是双重的:首先介绍一种可行的子结构化方法,以减轻当前方法的实验和多组分限制。其次,研究了在后机身安装的双引擎飞机上进行子结构分析的模态特性和适用性。尽管已经证明该构造增加了内部车厢的噪声和振动水平,但是在文献中并没有很好地理解该构造。首先进行了计算模型的实验验证。对经过验证的计算模型进行的子结构分析产生了局部和全局模态的固有频率,平均频率在6.47%之内一致,对于所有考虑的模态,伪正交项均大于0.89。事实证明,该方法对于在所研究的飞机配置中生成全局结构内局部模式的准确表示很有用。这将使将来的工作能够使用创新的设计方法更彻底地调查本地模式,并确信本地模式将与全局模式相关。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号