首页> 外文期刊>Aerospace science and technology >Three-dimensional fluid-structure interaction simulation with a hybrid RANS-LES turbulence model for applications in transonic flow domain
【24h】

Three-dimensional fluid-structure interaction simulation with a hybrid RANS-LES turbulence model for applications in transonic flow domain

机译:混合RANS-LES湍流模型的三维流固耦合模拟在跨音速流域中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Current industrial practice for the fluid-structure interaction (FSI) analyses and prediction of aeroelastic phenomena, such as flutter, is heavily based on linear methods. These methods involve many of design limitations and envelope restrictions for aircraft. In this paper novel hybrid Reynolds-Averaged Navier-Stokes - Large Eddy Simulation (RANS-LES) turbulence model, i.e. k-Omega Shear Stress Transport Scale-Adaptive Improved Delayed Detached Eddy Simulation (k-Omega SST SA IDDES) is tested and implemented in the FSI procedure and is applied in transonic flow. This model is also compared with the lower fidelity RANS models, i.e. k-omega SST and Spalart-Allmaras. More precisely, a strongly coupled three-dimensional (3D) PSI solver is combined with the turbulence model and large deformation updated Lagrangian finite volume structural solver in order to resolve standard computational fluid dynamics (CFD) and aeroelastic benchmark cases of transonic flow. The turbulence model combines the advanced capabilities of the existing SST, SAS and IDDES turbulence models. Unsteadiness detection deficiency of SAS is automatically supplemented by the IDDES term included in kinetic energy equation. The numerical results of Onera M6 and AGARD 445.6 validation cases are presented and compared with the existing experimental results. Discretization of the governing equations is performed by cell-centered finite volume method (FVM) on unstructured meshes. Further application of the FSI procedure for the FSI analyzes of the whole aircraft structures is one of the aims. The emphasis is made on turbulence modeling which appears to have a major impact to the prediction of FSI behavior in transonic flow domain. In this work the aeroelasticity is treated as one of the many FSI branches. Described FSI solver is custom written and implemented in OpenFOAM. (C) 2015 Elsevier Masson SAS. All rights reserved.
机译:当前用于流固​​耦合(FSI)分析和预测诸如弹振等气动弹性现象的工业实践在很大程度上基于线性方法。这些方法涉及飞机的许多设计限制和包络限制。在本文中,测试并实现了新型的混合雷诺平均Navier-Stokes-大涡模拟(RANS-LES)湍流模型,即k-Omega剪切应力传递尺度-自适应改进的延迟分离涡模拟(k-Omega SST SA IDDES)在FSI程序中,并应用于跨音速流。该模型还与低保真RANS模型(即k-omega SST和Spalart-Allmaras)进行了比较。更准确地说,将强耦合三维(3D)PSI求解器与湍流模型和大变形更新的拉格朗日有限体积结构求解器组合在一起,以解决跨音速流的标准计算流体力学(CFD)和气动弹性基准情况。湍流模型结合了现有SST,SAS和IDDES湍流模型的高级功能。动能方程中包含的IDDES项会自动补充SAS的不稳定检测缺陷。介绍了Onera M6和AGARD 445.6验证案例的数值结果,并将其与现有的实验结果进行了比较。控制方程的离散化是通过以单元为中心的有限体积方法(FVM)在非结构化网格上进行的。目标之一是进一步应用FSI程序进行整个飞机结构的FSI分析。重点放在湍流建模上,该建模似乎对跨音速流域中FSI行为的预测产生重大影响。在这项工作中,空气弹性被视为许多FSI分支之一。所描述的FSI求解器是在OpenFOAM中定制编写并实现的。 (C)2015 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号