首页> 外文期刊>Aerospace science and technology >Simulations of an aircraft with constant and pulsed blowing flow control at the engine/wing junction
【24h】

Simulations of an aircraft with constant and pulsed blowing flow control at the engine/wing junction

机译:在发动机/机翼交界处具有恒定和脉冲吹气流量控制的飞机的仿真

获取原文
获取原文并翻译 | 示例
           

摘要

In high-lift and especially landing conditions, the vortices emerging from the engine strake and pylon as well as from the inboard and outboard slat tips of civil aircraft configurations can be the cause of the so-called nacelle wake flow separation. This phenomenon might be responsible for the wing stall and sudden lift loss; the effect is expected to increase with the coming up of enlarged nacelles and larger slat cutouts typical of Ultra High Bypass Ratio turbofan engines. In the framework of the European project AFLoNext, DLR and ONERA performed numerical studies focused on a realistic aircraft in high-lift configuration. Structured and unstructured grids were generated to perform Reynolds Averaged Navier-Stokes computations aimed at analyzing the baseline flow without control and determining relevant location and settings for active flow control systems. Constant blowing devices with different slot sizes, types and injection velocities were evaluated with RANS simulations over complete lift polars. The gains in CLmax were quantified; they range from 1 to 3% for actuator capacities compatible with manufacturer requirements, the nacelle wake separation appears at angles of attack one to two degrees higher than without control and the lift levels in post-stall conditions are significantly improved. Finally, unsteady RANS computations were carried out to investigate the potential of a pulsed blowing device. The gains in CLmax and flow separation containment obtained with the latter are similar to those of constant blowing devices which yet exhibit greater momentum coefficient and mass flow rate values. (C) 2017 Elsevier Masson SAS. All rights reserved.
机译:在高空飞行特别是降落的情况下,从发动机机匣和吊架以及民用飞机配置的内侧和外侧板条尖端产生的涡流可能是所谓的机舱尾流分离的原因。这种现象可能是机翼失速和突然升力损失的原因。随着超高旁路比涡轮风扇发动机典型的机舱增大和更大的板条切口的出现,预计效果会增强。在欧洲项目AFLoNext的框架中,DLR和ONERA进行了数值研究,重点研究了高升程配置的现实飞机。生成结构化和非结构化网格以执行雷诺平均Navier-Stokes计算,目的是在无控制的情况下分析基线流量,并确定主动流量控制系统的相关位置和设置。在整个提升极上,通过RANS模拟评估了具有不同缝隙尺寸,类型和注射速度的恒定吹塑设备。量化CLmax的增益;致动器的能力与制造商的要求相适应,其范围从1%到3%,机舱尾流分离的迎角比没有控制时高1-2度,并且失速后的升力水平得到了显着改善。最后,进行了不稳定的RANS计算,以研究脉冲吹气装置的潜力。 CLmax的增益和用后者获得的气流分离容限与恒定吹气装置的相似,后者仍表现出更大的动量系数和质量流率值。 (C)2017 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号