首页> 外文期刊>IEEE Transactions on Aerospace and Electronic Systems >A Machine Learning-Based Approach for Improved Orbit Predictions of LEO Space Debris With Sparse Tracking Data From a Single Station
【24h】

A Machine Learning-Based Approach for Improved Orbit Predictions of LEO Space Debris With Sparse Tracking Data From a Single Station

机译:一种基于机器学习的方法,用于改进Leo空间碎片的轨道预测,单个站稀疏跟踪数据

获取原文
获取原文并翻译 | 示例
           

摘要

Accurate orbit prediction (OP) of space debris is vital in space situation awareness (SSA) related tasks, such as space collision warnings. However, owing to the sparse and low precision observations, unknown geometrical and physical features of debris, and effects of incomplete force models, OP based on the orbital mechanics theory or physics-based OP of space debris suffers from rapid error growth over a long duration, limiting the period of validity of debris OP for precise space applications. Considering that the tracking arcs of a debris object over a single station often share a similar temporal and spatial distribution in the inertial space, the resultant OP errors possibly have a coherent relationship with the temporal and spatial distribution of tracking arcs. This article proposes a machine learning (ML)-based approach to model the underlying pattern of debris OP errors from historical observations and apply it to modify the future physics-based OP results. The approach includes three steps: constructing a historical OP error set, training an ML model to fit the historical OP error set, and correcting the future physics-based OP with ML-predicted orbital errors. The ensemble learning algorithm of boosting tree is studied as the primary ML method for the error modeling and predicting process. Experiments with three low-Earth-orbit objects, tracked by a single radar station, demonstrate that the trained ML models can capture more than 80% of the underlying pattern of the historical OP errors. More importantly, the errors of physics-based OP over the future seven days reduce from thousands of meters to hundreds or even tens of meters through the error correction with the learned error pattern, achieving at least 50% accuracy improvement. Such dramatic OP improvements show the promising potential of ML for enhanced SSA capability.
机译:空间碎片的准确轨道预测(OP)在空间情况意识(SSA)相关任务中至关重要,如太空碰撞警告。然而,由于稀疏和低精度观测,碎片的未知几何和物理特征,以及不完全力模型的效果,基于轨道力学理论或基于物理的空间碎片的OP遭受了较长的持续时间,限制碎片OP的有效期,以实现精确的空间应用。考虑到在单个站上的碎片对象的跟踪弧经常在惯性空间中共享类似的时间和空间分布,所得到的操作误差可能具有与跟踪弧的时间和空间分布相干关系。本文提出了一种机器学习(ML)的方法,用于模拟历史观测的碎片OP错误的底层模式,并应用其来修改基于物理的OP结果。该方法包括三个步骤:构建一个历史op错误集,培训ML模型以适合历史op错误集,并纠正ML预测轨道错误的未来物理的OP。研究了升压树的集合学习算法作为误差建模和预测过程的主要ML方法。用单个雷达站跟踪的三个低地球轨道对象的实验证明训练有素的ML模型可以捕获历史OP错误的底层模式的80%以上。更重要的是,基于物理的OP的错误未来七天从数千米到数千米或甚至数十米的误差校正,通过学习误差模式,实现至少50%的准确性改进。这种戏剧性的op改进显示了ML的有希望的潜力,用于增强SSA能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号