...
首页> 外文期刊>IEEE Transactions on Aerospace and Electronic Systems >Sliding Mode Guidance Law for Impact Time Control Without Explicit Time-to-Go Estimation
【24h】

Sliding Mode Guidance Law for Impact Time Control Without Explicit Time-to-Go Estimation

机译:无需明确估计走时的滑模制导律,用于冲击时间控制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents an impact time control guidance law that does not perform explicit time-to-go estimation. In order to satisfy the interception and the desired impact time constraint simultaneously, a sliding surface variable formulated as a sum of the relative range and the desired time-to-go is defined, weighted by two nonzero weighting functions. Then, the achievement of the sliding mode satisfies the following equivalence: The relative range is zero if and only if the elapsed time equals to the desired impact time. It means that both the interception and impact time control can be satisfied at the same time in the sliding mode. The impact time control guidance law is derived to enforce the defined surface variable to the sliding mode. Because the law is designed based on the capture condition without separate time-to-go estimation process, the achievement of the sliding mode always guarantees the interception of the target at the desired impact time. In addition, the proposed law can be applied to an engagement considering nonstationary targets in a straightforward manner because the corresponding time-to-go estimation is not needed. Simulation results demonstrate that the proposed guidance law has better performance in comparison with the existing guidance law, in respect of satisfying the desired impact time constraint against a nonstationary target.
机译:本文提出了一种不执行明确的走时估计的影响时间控制指导律。为了同时满足拦截和期望的冲击时间约束,定义了由两个相对范围和期望的行驶时间之和构成的滑动表面变量,并通过两个非零加权函数加权。然后,滑模的实现满足以下等效条件:当且仅当经过时间等于所需的冲击时间时,相对范围为零。这意味着在滑动模式下可以同时满足拦截和冲击时间控制。得出了冲击时间控制指导律,以将定义的表面变量强制为滑动模式。因为定律是根据捕获条件设计的,而没有单独的时间估计过程,所以滑模的实现始终保证了目标在所需的撞击时间被拦截。另外,提议的法律可以直接应用到考虑非平稳目标的参与中,因为不需要相应的走时估计。仿真结果表明,所提出的制导律与现有的制导律相比,在满足针对非平稳目标的预期冲击时间约束方面具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号