首页> 外文期刊>Aerosol Science and Technology >Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth
【24h】

Characterization of Nanoaerosol Size Change During Enhanced Condensational Growth

机译:增强凝结生长过程中纳米气溶胶尺寸变化的表征

获取原文
获取原文并翻译 | 示例
       

摘要

Increasing the size of nanoaerosols may be beneficial in a number of applications, including filtration, particle size selection, and targeted respiratory drug delivery. A potential method to increase particle or droplet size is enhanced condensational growth (ECG), which involves combining the aerosol with saturated or supersaturated air. In this study, we characterize the ECG process in a model tubular geometry as a function of initial aerosol size (mean diameters-150, 560, and 900 nm) and relative humidity conditions using both in vitro experiments and numerical modeling. Relative humidities (99.8-104%) and temperatures (25-39°C) were evaluated that can safely be applied to either targeted respiratory drug delivery or personal aerosol filtration systems. For inlet saturated air temperatures above ambient conditions (30 and 39°C), the initial nanoaerosols grew to a size range of 1000-3000 nm (1-3 m) over a time period of 0.2 s. The numerical model results were generally consistent with the experimental findings and predicted final to initial diameter ratios of up to 8 after 0.2 s of humidity exposure and 14 at 1 s. Based on these observations, a respiratory drug delivery approach is suggested in which nanoaerosols in the size range of 500 nm are delivered in conjunction with a saturated or supersaturated air stream. The initial nanoaerosol size will ensure minimal deposition and loss in the mouth-throat region while condensational growth in the respiratory tract can be used to ensure maximal lung retention and to potentially target the site of deposition.
机译:在许多应用中,增加纳米气溶胶的尺寸可能是有益的,包括过滤,粒径选择和靶向呼吸药物递送。增大颗粒或液滴尺寸的一种潜在方法是增强凝结生长(ECG),其中包括将气溶胶与饱和或过饱和空气混合。在这项研究中,我们使用体外实验和数值模拟,将模型管状几何结构中的ECG过程表征为初始气溶胶尺寸(平均直径150、560和900 nm)和相对湿度条件的函数。相对湿度(99.8-104%)和温度(25-39°C)进行了评估,可以安全地应用于目标呼吸药物输送或个人气雾过滤系统。对于高于环境条件(30和39°C)的进气饱和空气温度,初始纳米气溶胶在0.2 s的时间内增长到1000-3000 nm(1-3 m)的大小范围。数值模型结果总体上与实验结果一致,并且预测的最终直径与初始直径之比在暴露于湿度0.2 s后可达8,而在1 s时可达14。基于这些观察结果,提出了一种呼吸药物输送方法,其中将500 nm大小的纳米气溶胶与饱和或过饱和空气流一起输送。初始的纳米气溶胶大小将确保在喉咙区域的沉积和损失最小,而呼吸道中的凝结生长可用于确保最大程度的肺lung留并潜在地靶向沉积部位。

著录项

  • 来源
    《Aerosol Science and Technology》 |2010年第6期|p.473-483|共11页
  • 作者

    P. Worth Longest;

  • 作者单位

    Department of Mechanical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 00:57:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号