首页> 外文期刊>The Aeronautical Journal >DLR natural and hybrid transonic laminar wing design incorporating new methodologies
【24h】

DLR natural and hybrid transonic laminar wing design incorporating new methodologies

机译:结合了新方法的DLR自然和混合跨音速层流机翼设计

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work natural laminar flow (NLF) and hybrid laminar flow (HLF) wing designs are presented which were obtained by combining new methodologies with experience and knowledge obtained with traditional laminar wing design methods. The NLF wing design is performed for wing-body configurations with backward swept wing (BSW) and forward swept wing (FSW). Initial aerofoil sections were obtained by using a new sectional conical wing method which allows the design of transonic wing sections, taking into account the effects of sweep and taper for the computational cost of a 2D method. Except for flow regions with strong 3D influence, wings constructed with these aerofoils showed an acceptably large region with laminar boundary layer and small shocks at design and specified off-design conditions. For regions close to the body and the tip a 3D inverse design method was further required. For the BSW case, due to cross flow a premature transition occurred. Therefore, a HLF panel was required to obtain a larger laminar region. A suction distribution was obtained using the suction distribution module of the automated target pressure generator (ATPG). This generator optimises the pressure distributions in terms of minimising drag while keeping certain boundary conditions constant, e.g. lift and momentum. Using the ATPG, the laminar extent of the BSW NLF design could be further improved for the inboard wing. With the new methodologies design work was reduced. They lead to a design with reserves that allow for acceptable off-design performance qualities by keeping the wing laminar over a wide range of flight conditions.
机译:在本工作中,提出了自然层流(NLF)和混合层流(HLF)机翼设计,这些设计是通过将新方法与传统层流机翼设计方法的经验和知识相结合而获得的。 NLF机翼设计是针对具有后掠机翼(BSW)和前掠机翼(FSW)的机翼构型进行的。通过使用新的截面圆锥形机翼方法获得初始机翼截面,该方法可以设计跨音速机翼截面,并考虑到扫掠和锥度对2D方法的计算成本的影响。除了具有强烈3D影响的流动区域外,用这些翼型构造的机翼在设计和指定的非设计条件下均显示出可接受的较大区域,具有层状边界层和较小的冲击。对于靠近身体和尖端的区域,还需要3D逆向设计方法。对于BSW情况,由于横流而发生过早过渡。因此,需要HLF面板以获得更大的层状区域。使用自动目标压力发生器(ATPG)的吸力分配模块获得吸力分布。该发生器根据使阻力最小化的同时使压力分布最优化,同时保持某些边界条件恒定,例如。提升和动力。使用ATPG,可以进一步改善内侧机翼的BSW NLF设计的层流范围。使用新的方法,减少了设计工作。它们导致了具有储备的设计,该储备通过在广泛的飞行条件下保持机翼层流来实现可接受的偏离设计的性能质量。

著录项

  • 来源
    《The Aeronautical Journal》 |2015年第1221期|1303-1326|共24页
  • 作者

    Streit T.; Wedler S.; Kruse M.;

  • 作者单位

    DLR, Inst Aerodynam & Flow Technol, Braunschweig, Germany;

    DLR, Inst Aerodynam & Flow Technol, Braunschweig, Germany;

    DLR, Inst Aerodynam & Flow Technol, Braunschweig, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号