首页> 外文期刊>Advances in Water Resources >Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method
【24h】

Numerical simulation of floods from multiple sources using an adaptive anisotropic unstructured mesh method

机译:基于自适应各向异性非结构网格方法的多源洪水数值模拟

获取原文
获取原文并翻译 | 示例
           

摘要

The coincidence of two or more extreme events (precipitation and storm surge, for example) may lead to severe floods in coastal cities. It is important to develop powerful numerical tools for improved flooding predictions (especially over a wide range of spatial scales - metres to many kilometres) and assessment of joint influence of extreme events. Various numerical models have been developed to perform high-resolution flood simulations in urban areas. However, the use of high-resolution meshes across the whole computational domain may lead to a high computational burden. More recently, an adaptive isotropic unstructured mesh technique has been first introduced to urban flooding simulations and applied to a simple flooding event observed as a result of flow exceeding the capacity of the culvert during the period of prolonged or heavy rainfall. Over existing adaptive mesh refinement methods (AMR, locally nested static mesh methods), this adaptive unstructured mesh technique can dynamically modify (both, coarsening and refining the mesh) and adapt the mesh to achieve a desired precision, thus better capturing transient and complex flow dynamics as the flow evolves.In this work, the above adaptive mesh flooding model based on 2D shallow water equations (named as Floodity) has been further developed by introducing (1) an anisotropic dynamic mesh optimization technique (anisotropic-DMO); (2) multiple flooding sources (extreme rainfall and sea-level events); and (3) a unique combination of anisotropic-DMO and high-resolution Digital Terrain Model (DTM) data. It has been applied to a densely urbanized area within Greve, Denmark. Results from MIKE 21 FM are utilized to validate our model. To assess uncertainties in model predictions, sensitivity of flooding results to extreme sea levels, rainfall and mesh resolution has been undertaken. The use of anisotropic-DMO enables us to capture high resolution topographic features (buildings, rivers and streets) only where and when is needed, thus providing improved accurate flooding prediction while reducing the computational cost. It also allows us to better capture the evolving flow features (wetting-drying fronts).
机译:两个或两个以上极端事件(例如降水和风暴潮)的同时发生可能导致沿海城市发生严重洪灾。重要的是要开发强大的数值工具,以改善洪水预报(尤其是在大范围的空间范围内,从米到几公里),并评估极端事件的共同影响。已经开发出各种数值模型来在城市地区执行高分辨率洪水模拟。但是,在整个计算域上使用高分辨率网格可能会导致较高的计算负担。最近,自适应各向同性非结构化网格技术首先被引入到城市洪水模拟中,并被应用到一个简单的洪水事件中,该事件是在长时间降雨或暴雨期间流量超过涵洞容量的结果。在现有的自适应网格细化方法(AMR,局部嵌套静态网格方法)上,这种自适应非结构​​化网格技术可以动态修改(粗化和细化网格),并使网格适应所需的精度,从而更好地捕获瞬态和复杂流在这项工作中,通过引入(1)各向异性动态网格优化技术(anisotropic-DMO),进一步开发了基于2D浅水方程(称为Floodity)的自适应网格洪水模型。 (2)多种洪水源(极端降雨和海平面事件); (3)各向异性DMO和高分辨率数字地形模型(DTM)数据的独特组合。它已被应用于丹麦格雷夫(Greve)内一个人口稠密的城市化地区。 MIKE 21 FM的结果用于验证我们的模型。为了评估模型预测中的不确定性,已经进行了洪水结果对极端海平面,降雨和网格分辨率的敏感性。各向异性DMO的使用使我们能够仅在需要的地方和时间捕获高分辨率的地形特征(建筑物,河流和街道),从而在降低计算成本的同时提供了改进的准确洪水预测。它也使我们能够更好地捕获不断变化的流动特征(干湿前沿)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号