...
首页> 外文期刊>Advances in Water Resources >Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures
【24h】

Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures

机译:不同毛细管压力下非均质渗透介质中两相流的数值模拟

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Contrast in capillary pressure of heterogeneous permeable media can have a significant effect on the flow path in two-phase immiscible flow. Very little work has appeared on the subject of capillary heterogeneity despite the fact that in certain cases it may be as important as permeability heterogeneity. The discontinuity in saturation as a result of capillary continuity, and in some cases capillary discontinuity may arise from contrast in capillary pressure functions in heterogeneous permeable media leading to complications in numerical modeling. There are also other challenges for accurate numerical modeling due to distorted unstructured grids because of the grid orientation and numerical dispersion effects. Limited attempts have been made in the literature to assess the accuracy of fluid flow modeling in heterogeneous permeable media with capillarity heterogeneity. The basic mixed finite element (MFE) framework is a superior method for accurate flux calculation in heterogeneous media in comparison to the conventional finite difference and finite volume approaches. However, a deficiency in the MFE from the direct use of fractional flow formulation has been recognized lately in application to flow in permeable media with capillary heterogeneity. In this work, we propose a new consistent formulation in 3D in which the total velocity is expressed in terms of the wetting-phase potential gradient and the capillary potential gradient. In our formulation, the coefficient of the wetting potential gradient is in terms of the total mobility which is smoother than the wetting mobility. We combine the MFE and discontinuous Galerkin (DG) methods to solve the pressure equation and the saturation equation, respectively. Our numerical model is verified with 1D analytical solutions in homogeneous and heterogeneous media. We also present 2D examples to demonstrate the significance of capillary heterogeneity in flow, and a 3D example to demonstrate the negligible effect of distorted meshes on the numerical solution in our proposed algorithm.
机译:非均质渗透性介质毛细压力的对比可能对两相不混溶流中的流路产生重大影响。尽管在某些情况下毛细管异质性与渗透性异质性一样重要,但有关毛细管异质性的工作很少。由于毛细管连续性而导致的饱和不连续性,在某些情况下,毛细管不连续性可能是由于非均质渗透性介质中毛细管压力函数的差异引起的,从而导致了数值建模的复杂性。由于网格定向和数值分散效应,由于扭曲的非结构化网格,对于精确的数值建模还存在其他挑战。在文献中已进行了有限的尝试,以评估具有毛细非均质性的非均质渗透性介质中流体流动模型的准确性。与传统的有限差分和有限体积方法相比,基本的混合有限元(MFE)框架是一种用于在非均质介质中精确计算通量的高级方法。然而,近来已经认识到直接使用分流制剂的MFE的不足之处在于其在具有毛细管异质性的可渗透介质中的流动中的应用。在这项工作中,我们提出了一种新的一致的3D公式,其中总速度用润湿相电势梯度和毛细管电势梯度表示。在我们的公式中,润湿势梯度的系数是根据总迁移率来确定的,总迁移率比润湿迁移率更平滑。我们将MFE和不连续Galerkin(DG)方法结合起来分别求解压力方程和饱和方程。我们的数值模型在均匀介质和非均匀介质中用一维解析解进行了验证。我们还提供了2D示例,以说明流动中毛细管异质性的重要性,以及3D示例,以说明在我们提出的算法中,变形网格对数值解的影响可忽略不计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号