...
首页> 外文期刊>Advances in Water Resources >Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures
【24h】

Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures

机译:使用组分和复合物表面温度的蒸散发两源能量平衡模型估算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The two source energy balance model (TSEB) can estimate evaporation (E), transpiration (T), and evapotranspiration (ET) of vegetated surfaces, which has important applications in water resources management for irrigated crops. The TSEB requires soil (T_S) and canopy (T_C) surface temperatures to solve the energy budgets of these layers separately. Operationally, usually only composite surface temperature (T_R) measurements are available at a single view angle. For surfaces with nonrandom spatial distribution of vegetation such as row crops, T_R often includes both soil and vegetation, which may have vastly different temperatures. Therefore, T_S and T_C must be derived from a single T_R measurement using simple linear mixing, where an initial estimate of T_C is calculated, and the temperature - resistance network is solved iteratively until energy balance closure is reached. Two versions of the TSEB were evaluated, where a single T_R measurement was used (TSEB-T_R) and separate measurements of T_S and T_C were used (TSEB-T_C-T_S). All surface temperatures (T_S, T_C, and T_R) were measured by stationary infrared thermometers that viewed an irrigated cotton (Gossypium hirsutum L.) crop. The TSEB-T_R version used a Penman-Monteith approximation for T_C, rather than the Priestley-Taylor-based formulation used in the original TSEB version, because this has been found to result in more accurate partitioning of E and T under conditions of strong advection. Calculations of E, T, and ET by both model versions were compared with measurements using microlysimeters, sap flow gauges, and large monolythic weighing lysimeters, respectively. The TSEB-T_R version resulted in similar overall agreement with the TSEB-T_C-T_S version for calculated and measured E (RMSE = 0.7 mm d~(-1)) and better overall agreement for T (RMSE = 0.9 vs. 1.9 mm d~(-1)), and ET (RMSE = 0.6 vs. 1.1 mm d~(-1)). The TSEB-T_C-T_S version calculated daily ET up to 1.6 mm d~(-1) (15%) less early in the season and up to 2.0 mm d~(-1) (44%) greater later in the season compared with lysimeter measurements. The TSEB-T_R also calculated larger ET later in the season but only up to 1.4 mm d~(-1) (20%). ET underestimates by the TSEB-T_C-T_S version may have been related to limitations in measuring T_C early in the season when the canopy was sparse. ET overestimates later in the season by both versions may have been related to a greater proportion of non-transpiring canopy elements (flowers, bolls, and senesced leaves) being out of the T_C and T_R measurement view.
机译:两源能量平衡模型(TSEB)可以估算植被表面的蒸发(E),蒸腾(T)和蒸散(ET),这在灌溉作物的水资源管理中具有重要的应用。 TSEB需要土壤(T_S)和树冠(T_C)表面温度来分别解决这些层的能量预算。在操作上,通常只能在单个视角下进行复合表面温度(T_R)测量。对于具有非随机空间分布的植被(例如大田作物)的表面,T_R通常包括土壤和植被,温度可能相差很大。因此,必须使用简单的线性混合从单个T_R测量中得出T_S和T_C,在该测量中将计算T_C的初始估算值,并迭代求解温度-电阻网络,直到达到能量平衡平衡。评估了两种版本的TSEB,其中使用了一次T_R测量(TSEB-T_R),分别使用了T_S和T_C测量(TSEB-T_C-T_S)。所有表面温度(T_S,T_C和T_R)均通过固定红外温度计测量,该温度计观察了灌溉的棉花(陆地棉)的作物。 TSEB-T_R版本使用T_C的Penman-Monteith近似值,而不是原始TSEB版本中使用的基于Priestley-Taylor的公式,因为已发现在强对流条件下,E和T的划分更加精确。将两种模型版本的E,T和ET的计算值分别与使用微量测微仪,树液流量计和大型单片称重测厚仪的测量结果进行了比较。对于计算和测量的E(RMSE = 0.7 mm d〜(-1)),TSEB-T_R版本与TSEB-T_C-T_S版本具有相似的总体一致性,对于T的总体一致性更好(RMSE = 0.9 vs. 1.9 mm d 〜(-1))和ET(RMSE = 0.6 vs. 1.1 mm d〜(-1))。 TSEB-T_C-T_S版本在本赛季初期计算的每日ET减少了1.6 mm d〜(-1)(15%),而在本季后期计算的每日ET则增加了2.0 mm d〜(-1)(44%)用溶渗仪测量。 TSEB-T_R在该季节后期也计算出较大的ET,但仅达到1.4 mm d〜(-1)(20%)。 TSEB-T_C-T_S版本的ET低估了可能与在树冠稀疏的季节早期测量T_C的限制有关。两种版本在本季晚些时候对ET的高估可能与T_C和T_R测量视图之外的较大比例的非蒸腾冠层元素(花,铃和片状叶子)有关。

著录项

  • 来源
    《Advances in Water Resources》 |2012年第12期|134-151|共18页
  • 作者单位

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

    USDA-Agricultural Research Service, Hydrology & Remote Sensing Laboratory, Bldg. 007, BARC-West, Beltsville, MD 20705, United States;

    USDA-Agricultural Research Service, Hydrology & Remote Sensing Laboratory, Bldg. 007, BARC-West, Beltsville, MD 20705, United States;

    Gilat Research Center, Agricultural Research Organization, Rural delivery, Negev 85280, Israel;

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

    USDA-ARS Conservation and Production Research Laboratory, P.O. Drawer 10, Bushland, TX 79012, United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    evaporation; transpiration; evapotranspiration; irrigation; cotton; remote sensing;

    机译:蒸发;蒸腾作用蒸散灌溉;棉;遥感;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号