...
首页> 外文期刊>Advances in Water Resources >An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media
【24h】

An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media

机译:改进的灰色格子Boltzmann模型,用于模拟多尺度多孔介质中的流体流动

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A lattice Boltzmann (LB) model is proposed for simulating fluid flow in porous media by allowing the aggregates of finer-scale pores and solids to be treated as 'equivalent media'. This model employs a partially bouncing-back scheme to mimic the resistance of each aggregate, represented as a gray node in the model, to the fluid flow. Like several other lattice Boltzmann models that take the same approach, which are collectively referred to as gray lattice Boltzmann (GLB) models in this paper, it introduces an extra model parameter, n_s, which represents a volume fraction of fluid particles to be bounced back by the solid phase rather than the volume fraction of the solid phase at each gray node. The proposed model is shown to conserve the mass even for heterogeneous media, while this model and that model of Walsh et al. (2009) [1], referred to the WBS model thereafter, are shown analytically to recover Darcy-Brinkman's equations for homogenous and isotropic porous media where the effective viscosity and the permeability are related to n_s and the relaxation parameter of LB model. The key differences between these two models along with others are analyzed while their implications are highlighted. An attempt is made to rectify the misconception about the model parameter n_s being the volume fraction of the solid phase. Both models are then numerically verified against the analytical solutions for a set of homogenous porous models and compared each other for another two sets of heterogeneous porous models of practical importance. It is shown that the proposed model allows true no-slip boundary conditions to be incorporated with a significant effect on reducing errors that would otherwise heavily skew flow fields near solid walls. The proposed model is shown to be numerically more stable than the WBS model at solid walls and interfaces between two porous media. The causes to the instability in the latter case are examined. The link between these two GLB models and a generalized Navier-Stokes model [2] for heterogeneous but isotropic porous media are explored qualitatively. A procedure for estimating model parameter n_s is proposed.
机译:提出了一种格子Boltzmann(LB)模型,用于通过允许将较小尺度的孔和固体的聚集体视为“等效介质”来模拟多孔介质中的流体流动。该模型采用部分回弹方案来模拟每种聚集体(在模型中以灰色节点表示)对流体流动的阻力。与采用相同方法的其他几个格子Boltzmann模型(在本文中统称为灰色格子Boltzmann(GLB)模型)一样,它引入了一个额外的模型参数n_s,它表示要反弹的流体颗粒的体积分数固相而不是每个灰色节点的固相体积分数。所提出的模型显示出即使对于异质介质也可以节省质量,而该模型和Walsh等人的模型则可以节省空间。 (2009)[1],此后称为WBS模型,以解析方式显示来恢复均质和各向同性多孔介质的Darcy-Brinkman方程,其中有效粘度和渗透率与n_s和LB模型的松弛参数有关。分析了这两个模型之间以及其他模型之间的关键差异,同时突出了它们的含义。试图纠正关于模型参数n_s为固相体积分数的误解。然后,针对一组同质多孔模型,对两个解决方案进行数值验证,并对两个具有实际重要性的异质多孔模型进行相互比较。结果表明,所提出的模型允许并入真正的无滑移边界条件,从而显着降低了误差,否则将严重地影响实体壁附近的流场。在固体壁和两个多孔介质之间的界面处,所提出的模型在数值上比WBS模型更稳定。检查了在后一种情况下不稳定的原因。定性地研究了这两种GLB模型与非均质各向同性多孔介质的广义Navier-Stokes模型[2]之间的联系。提出了估计模型参数n_s的过程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号