首页> 外文期刊>Advances in Structural Engineering >Vibration-based Bayesian model updating of civil engineering structures applying Gaussian process metamodel
【24h】

Vibration-based Bayesian model updating of civil engineering structures applying Gaussian process metamodel

机译:基于高斯过程元模型的基于振动贝叶斯模型的土木工程结构更新

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Structural health monitoring plays a significant role in providing information regarding the performance of structures throughout their life spans. However, information that is directly extracted from monitored data is usually susceptible to uncertainties and not reliable enough to be used for structural investigations. Finite element model updating is an accredited framework that reliably identifies structural behavior. Recently, the modular Bayesian approach has emerged as a probabilistic technique in calibrating the finite element model of structures and comprehensively addressing uncertainties. However, few studies have investigated its performance on real structures. In this article, modular Bayesian approach is applied to calibrate the finite element model of a lab-scaled concrete box girder bridge. This study is the first to use the modular Bayesian approach to update the initial finite element model of a real structure for two states-undamaged and damaged conditions-in which the damaged state represents changes in structural parameters as a result of aging or overloading. The application of the modular Bayesian approach in the two states provides an opportunity to examine the performance of the approach with observed evidence. A discrepancy function is used to identify the deviation between the outputs of the experimental and numerical models. To alleviate computational burden, the numerical model and the model discrepancy function are replaced by Gaussian processes. Results indicate a significant reduction in the stiffness of concrete in the damaged state, which is identical to cracks observed on the body of the structure. The discrepancy function reaches satisfying ranges in both states, which implies that the properties of the structure are predicted accurately. Consequently, the proposed methodology contributes to a more reliable judgment about structural safety.
机译:在提供有关结构在其整个生命周期中的性能的信息时,结构健康监视起着重要作用。但是,直接从监视数据中提取的信息通常容易受到不确定性的影响,并且不够可靠,无法用于结构研究。有限元模型更新是一种经过认可的框架,可以可靠地识别结构行为。最近,模块化贝叶斯方法已经成为一种概率技术,用于校准结构的有限元模型并全面解决不确定性问题。但是,很少有研究调查其在实际结构上的性能。在本文中,模块化贝叶斯方法用于校准实验室规模的混凝土箱梁桥的有限元模型。这项研究是第一个使用模块化贝叶斯方法来更新真实状态的初始有限元模型的两个状态-损坏和损坏状态-损坏状态代表由于老化或过载而导致的结构参数变化。模块化贝叶斯方法在这两个州中的应用提供了一个机会,可以利用观察到的证据检查该方法的性能。差异函数用于识别实验模型和数值模型的输出之间的偏差。为了减轻计算负担,用高斯过程代替了数值模型和模型差异函数。结果表明在受损状态下混凝土的刚度显着降低,这与在结构体上观察到的裂缝相同。差异函数在两种状态下均达到令人满意的范围,这意味着该结构的特性可以准确预测。因此,所提出的方法有助于对结构安全性做出更可靠的判断。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号