首页> 外文期刊>Advances in space research >A binary discrete particle swarm optimization satellite selection algorithm with a queen informant for Multi-GNSS continuous positioning
【24h】

A binary discrete particle swarm optimization satellite selection algorithm with a queen informant for Multi-GNSS continuous positioning

机译:具有Queen Informant的二进制离散粒子群优化卫星选择算法,用于多GNSS连续定位

获取原文
获取原文并翻译 | 示例
           

摘要

Currently, there are more than 130 available navigation satellites, a much larger scale low earth orbit (LEO) satellites will be deployed in the near future. However, limited by computational performance, capacity and receiver channels, a subset of all visible satellites is suggested to be selected with a with better geometric dilution of precision (GDOP). Since a reduced set of used satellite will have little effect on positioning accuracy, in contrast, higher real-time performance will be obtained. In view of the problems of the particle swarm optimization (PSO) algorithm for satellites selection, we adopt an easy binary particle swarm optimization with a queen informant (EPSOq) algorithm. This avoids the concept of "speed" in the discrete PSO algorithm and directly calculates the probability of position value when updating particles, with a queen particle used to accelerate convergence. Further, considering the continuity of positioning, we use a sequence to determine whether satellite re-selection is necessary. If the visible satellite has not changed greatly, the results of the last satellite selection is used instead of selecting new satellites. The observation data collected in the East China Sea is utilized in the experiment. Compared with the traversal method which requires 51.215 s, the average calculation time of EPSOq-C is only 0.0025 s with a population size of 70, and the calculation speed is an order of magnitude faster than the PSO algorithm. Furthermore, the distribution of GDOP bias derived from EPSOq-C is more concentrated than the PSO algorithm.
机译:目前,有超过130个可用导航卫星,一个更大的低地轨道轨道(LEO)卫星将在不久的将来部署。然而,通过计算性能,容量和接收器通道的限制,建议用具有更好的几何稀释的精度(GDOP)来选择所有可见卫星的子集。由于一组减少的使用卫星对定位精度影响很小,相比之下,将获得更高的实时性能。鉴于卫星选择的粒子群优化(PSO)算法的问题,我们采用了Queen Informant(EPSOQ)算法的简单二进制粒子群优化。这避免了在离散PSO算法中的“速度”的概念,并且在更新粒子时直接计算位置值的概率,用于加速收敛的女王粒子。此外,考虑到定位的连续性,我们使用序列来确定是否需要卫星重新选择。如果可见卫星没有大变化,则使用最后卫星选择的结果代替选择新卫星。在东海收集的观察数据在实验中使用。与需要51.215 S的遍历方法相比,EPSOQ-C的平均计算时间仅为0.0025秒,群体大小为70,并且计算速度比PSO算法快。此外,衍生自EPSOQ-C的GDOP偏差的分布比PSO算法更浓缩。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号