...
首页> 外文期刊>Advances in space research >Application of an evolution strategy in planetary ephemeris modeling
【24h】

Application of an evolution strategy in planetary ephemeris modeling

机译:演化策略在行星星历表模拟中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Classical planetary ephemeris construction comprises three major steps which are to be performed iteratively: numerical integration of coupled equations of motion of a multi-body system (propagator step), reduction of observations (reduction step), and optimization of model parameters (adjustment step). In future, this approach may become challenged by further refinements in force modeling (e.g. inclusion of much more significant minor bodies than in the past), an ever-growing number of planetary observations (e.g. the vast amount of spacecraft tracking data), and big data issues in general. In order to circumvent the need for both the inversion of normal equation matrices and the determination of partial derivatives, and to prepare the ephemeris for applications apart from stand-alone solar-system planetary orbit calculations, here we propose an alternative ephemeris construction method. The main idea is to solve it as an optimization problem by straightforward direct evaluation of the whole set of mathematical formulas, rather than to solve it as an inverse problem with all its tacit mathematical assumptions and potential numerical difficulties. The usual gradient search is replaced by a stochastic search, namely an evolution strategy, the latter of which is perfect for the exploitation of parallel computing capabilities. Furthermore, this new approach allows for multi-criteria optimization and time-varying optima. These issues will become important in future once ephemeris construction is just one part of even larger optimization problems, e.g. the combined and consistent determination of a generalized physical state (orbit, size, shape, rotation, gravity,…) of celestial bodies (planets, satellites, asteroids, or comets), and/or if one seeks near real-time solutions. Here, we outline the general idea and exemplarily optimize high-correlated asteroidal ring model parameters (total mass and heliocentric radius), and individual asteroid masses, based on simulated observations.
机译:古典行星星历表的构建包括三个主要步骤,这些步骤将被迭代执行:多体系统运动耦合方程的数值积分(传播器步骤),观测值的减少(减少步骤)以及模型参数的优化(调整步骤) 。将来,这种方法可能会受到以下方面的挑战:力模型的进一步完善(例如,包含比过去重要得多的次要物体),不断增加的行星观测数据(例如,大量的航天器跟踪数据)以及庞大的数据问题。为了避免对正态方程矩阵求逆和确定偏导数的需要,并为独立于太阳系行星轨道计算的应用准备星历表,我们在此提出一种替代的星历表构造方法。主要思想是通过直接对整个数学公式进行直接评估来将其作为优化问题来解决,而不是将其作为具有所有隐性数学假设和潜在数值困难的逆问题来解决。通常的梯度搜索被随机搜索代替,即一种进化策略,后者对于利用并行计算功能是完美的。此外,这种新方法允许进行多标准优化和时变优化。一旦星历表结构只是更大的优化问题的一部分,例如星云,这些问题在未来将变得很重要。对天体(行星,卫星,小行星或彗星)的广义物理状态(轨道,大小,形状,旋转,重力等)的组合和一致的确定,以及/或者是否寻求近乎实时的解决方案。在此,我们概述了总体思路,并根据模拟观察结果示例性地优化了高相关性小行星环模型参数(总质量和日心半径)以及各个小行星质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号