...
首页> 外文期刊>Advances in space research >Calibration errors in determining slant Total Electron Content (TEC) from multi-GNSS data
【24h】

Calibration errors in determining slant Total Electron Content (TEC) from multi-GNSS data

机译:从多个GNSS数据确定倾斜总电子含量(TEC)时的校准错误

获取原文
获取原文并翻译 | 示例
           

摘要

The global navigation satellite system (GNSS) is presently a powerful tool for sensing the Earth's ionosphere. For this purpose, the ionospheric measurements (IMs), which are by definition slant total electron content biased by satellite and receiver differential code biases (DCBs), need to be first extracted from GNSS data and then used as inputs for further ionospheric representations such as tomography. By using the customary phase-to-code leveling procedure, this research comparatively evaluates the calibration errors on experimental IMs obtained from three GNSS, namely the US Global Positioning System (GPS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Galileo. On the basis of ten days of dual-frequency, triple-GNSS observations collected from eight co-located ground receivers that independently form short-baselines and zero-baselines, the IMs are determined for each receiver for all tracked satellites and then for each satellite differenced for each baseline to evaluate their calibration errors. As first derived from the short-baseline analysis, the effects of calibration errors on IMs range, in total electron content units, from 1.58 to 2.16, 0.70 to 1.87, and 1.13 to 1.56 for GPS, Galileo, and BDS, respectively. Additionally, for short-baseline experiment, it is shown that the code multipath effect accounts for their main budget. Sidereal periodicity is found in single-differenced (SD) IMs for GPS and BDS geostationary satellites, and the correlation of SD IMs over two consecutive days achieves the maximum value when the time tag is around 4 min. Moreover, as byproducts of zero-baseline analysis, daily between-receiver DCBs for GPS are subject to more significant intra-day variations than those for BDS and Galileo. (C) 2018 COSPAR. Published by Elsevier Ltd. All rights reserved.
机译:目前,全球导航卫星系统(GNSS)是检测地球电离层的强大工具。为此,首先需要从GNSS数据中提取电离层测量值(IM),其定义为由卫星和接收器差分码偏置(DCB)偏置的倾斜的总电子含量,然后用作进一步电离层表示的输入,例如断层扫描。通过使用惯用的相位到代码水准测量程序,本研究比较评估了从三个GNSS(美国全球定位系统(GPS),中国北斗导航卫星系统(BDS)和欧洲GNSS)获得的实验IM的校准误差伽利略从八个独立定位的短基线和零基线的同地接收器收集的十天双频,三次GNSS观测结果的基础上,确定所有跟踪卫星的每个接收器的IM,然后确定每个卫星的IM每个基线的差异以评估其校准误差。首先从短基线分析中得出,GPS,伽利略和BDS的总电子含量单位中,校准误差对IM的影响范围分别为1.58至2.16、0.70至1.87和1.13至1.56。此外,对于短基线实验,表明代码多径效应占了其主要预算。在GPS和BDS对地静止卫星的单差(SD)IM中发现了恒星周期性,当时间标签在4分钟左右时,连续两天SD IM的相关性达到最大值。此外,作为零基准分析的副产品,GPS的每日接收器间DCB的日内变化比BDS和Galileo的DCB更大。 (C)2018年COSPAR。由Elsevier Ltd.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号