...
首页> 外文期刊>Advances in Physics >Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
【24h】

Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview

机译:凝聚态动力学在原子长度和扩散时标上的相场晶体模型:概述

获取原文
           

摘要

Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.View full textDownload full text PACS 64.70.D- Solid-liquid transitions, 81.10.Aj Theory and models of crystal growth, physics and chemistry of crystal growth, crystal morphology, and orientation, 68.08.-p Liquid-solid interfaces, 61.30.-v Liquid crystalsKeywordsphase-field-crystal models, static and dynamical density functional theory, condensed matter dynamics of liquid crystals, nucleation and pattern formation, simulations in materials science, colloidal crystal growth and growth anisotropyRelated var addthis_config = { ui_cobrand: "Taylor & Francis Online", services_compact: "citeulike,netvibes,twitter,technorati,delicious,linkedin,facebook,stumbleupon,digg,google,more", pubid: "ra-4dff56cd6bb1830b" }; var addthis_config = {"data_track_addressbar":true,"ui_click":true}; Add to shortlist Link Permalink http://dx.doi.org/10.1080/00018732.2012.737555
机译:在这里,我们回顾了相场晶体(PFC)方法的基本概念和应用,该方法是材料科学中解决原子和微米级紧密耦合问题的最新模拟方法之一。 PFC方法在原子长度和扩散时间尺度上运行,因此构成了分子模拟方法的高效计算替代方案。在Elder等人的工作之后,它在材料科学领域的迅猛发展始于最近。 [物理牧师88(2002),p。 245701]。自从这些初步研究以来,动态密度泛函理论和热力学概念已与PFC方法联系起来,以作为PFC方法的进一步理论基础。在这篇综述中,我们总结了这些方法学的开发步骤以及PFC方法的最重要应用,特别着重于分别在硬物质和软物质物理学中采取的发展步骤之间的相互作用。这样做,我们希望介绍PFC建模的最新技术以及在不久的将来仍可能会由于物理和材料科学中的这种方法而产生的潜力。查看全文下载全文PACS 64.70.D- Solid-液体转变,81.10.Aj晶体生长的理论和模型,晶体生长的物理和化学,晶体形态和取向,68.08.-p液固界面,61.30.-v液晶关键词相场晶体模型,静态和动态密度泛函理论,液晶的凝聚态动力学,成核和图案形成,材料科学模拟,胶体晶体生长和生长各向异性相关var addthis_config = { ,delicious,linkedin,facebook,stumbleupon,digg,google,more“,发布号:” ra-4dff56cd6bb1830b“}; var addthis_config = {“ data_track_addressbar”:true,“ ui_click”:true};添加到候选列表链接永久链接http://dx.doi.org/10.1080/00018732.2012.737555

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号