...
首页> 外文期刊>Advances in Engineering Software >On a general implementation of h- and p-adaptive curl-conforming finite elements
【24h】

On a general implementation of h- and p-adaptive curl-conforming finite elements

机译:关于h和p自适应的符合卷曲的有限元的一般实现

获取原文
获取原文并翻译 | 示例

摘要

Edge (or Nedelec) finite elements are theoretically sound and widely used by the computational electromagnetics community. However, its implementation, especially for high order methods, is not trivial, since it involves many technicalities that are not properly described in the literature. To fill this gap, we provide a comprehensive description of a general implementation of edge elements of first kind within the scientific software project FEMPAR. We cover into detail how to implement arbitrary order (i.e., p-adaptive) elements on hexahedral and tetrahedral meshes. First, we set the three classical ingredients of the finite element definition by Ciarlet, both in the reference and the physical space: cell topologies, polynomial spaces and moments. With these ingredients, shape functions are automatically implemented by defining a judiciously chosen polynomial pre-basis that spans the local finite element space combined with a change of basis to automatically obtain a canonical basis with respect to the moments at hand. Next, we discuss global finite element spaces putting emphasis on the construction of global shape functions through oriented meshes, appropriate geometrical mappings, and equivalence classes of moments, in order to preserve the inter-element continuity of tangential components of the magnetic field. Finally, we extend the proposed methodology to generate global curl-conforming spaces on non-conforming hierarchically refined (i.e., h-adaptive) meshes with arbitrary order finite elements. Numerical results include experimental convergence rates to test the proposed implementation.
机译:边缘(或Nedelec)有限元理论上是合理的,并且被计算电磁学界广泛使用。然而,由于其涉及许多文献中未适当描述的技术,因此其实施,尤其是对于高阶方法的实施并非易事。为了填补这一空白,我们提供了对科学软件项目FEMPAR中第一种边缘元素的一般实现的全面描述。我们将详细介绍如何在六面体和四面体网格上实现任意顺序(即p自适应)元素。首先,我们在参考空间和物理空间中设置了Ciarlet定义的有限元素的三个经典成分:单元拓扑,多项式空间和矩。使用这些成分,可以通过定义跨局部有限元空间的明智选择的多项式预基以及基础的变化来自动实现形状函数,从而自动获得有关当前弯矩的规范基础。接下来,我们讨论全局有限元空间,重点是通过定向的网格,适当的几何映射以及矩的等价类构造全局形状函数,以保持磁场切向分量的元素间连续性。最后,我们扩展了提出的方法,以在具有任意阶次有限元的不合格分层精化(即h自适应)网格上生成全局卷曲合格空间。数值结果包括实验收敛速度,以测试提出的实施方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号