首页> 外文期刊>Advances in civil engineering >Instability Process of Crack Propagation and Tunnel Failure Affected by Cross-Sectional Geometry of an Underground Tunnel
【24h】

Instability Process of Crack Propagation and Tunnel Failure Affected by Cross-Sectional Geometry of an Underground Tunnel

机译:地下隧道横截面几何形状对裂纹扩展和隧道破坏的失稳过程的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The process of crack propagation and tunnel failure is affected by the cross-sectional geometry of an underground tunnel. In order to quantify the effect of section shape on the process of crack propagation in deep tunnels under high ground stress conditions, a total of four physical models with two cross-sectional shapes and twelve stress levels were designed and several large-scale physical model tests were conducted. The results indicated that, when the vertical stress is 4.94MPa, the length and depth of the cracks generated in the rock surrounding the horseshoe tunnel are about eight times that around a circular tunnel. The position where the circumferential displacement of the horseshoe tunnel begins to be stable is about two, to two and a half, times that around a circular tunnel. After the deep chamber was excavated, continuous spalling was found to occur at the foot of the horseshoe tunnel and microcracks in the surrounding rock were initially generated from the foot of the side wall and then developed upwards to form a conjugate sliding shape to the foot of the arch roof, where the cracks finally coalesced. Discontinuous spalling occurred at the midheight of the side wall of the circular tunnel after excavation, and microcracks in the surrounding rock were initially generated from the midheight of the side wall and then extended concentrically to greater depth in the rock mass surrounding the tunnel. Tensile failure mainly occurred on the surface of the side wall: shear failure mainly appeared in the surrounding rock.
机译:裂纹扩展和隧道破坏的过程受地下隧道横截面几何形状的影响。为了量化断面形状对高地应力条件下深埋隧道中裂纹扩展过程的影响,设计了总共四个具有两个断面形状和十二种应力水平的物理模型,并进行了几次大规模的物理模型试验进行了。结果表明,当竖向应力为4.94MPa时,马蹄形隧道周围岩石中产生的裂纹的长度和深度约为圆形隧道周围裂纹的八倍。马蹄形隧道的周向位移开始稳定的位置大约是圆形隧道周围的两倍至两倍半。挖掘深室后,发现在马蹄形隧道的脚下发生连续剥落,并且围岩中的微裂纹最初是从侧壁的脚部产生的,然后向上发展形成与脚底部的共轭滑动形状。拱形屋顶,裂缝终于汇合了。开挖后在圆形隧道侧壁的中部发生不连续的剥落,围岩中的微裂纹最初从侧壁的中部产生,然后在隧道周围的岩体中同心延伸到更大的深度。拉伸破坏主要发生在侧壁表面:剪切破坏主要发生在围岩中。

著录项

  • 来源
    《Advances in civil engineering》 |2019年第6期|3439543.1-3439543.17|共17页
  • 作者单位

    China Univ Min & Technol Beijing State Key Lab Coal Resources & Safe Min Beijing 100083 Peoples R China|State Key Lab Water Resource Protect & Utilizat C Beijing 100083 Peoples R China|Anhui Univ Sci & Technol Key Lab Safety & High Efficiency Coal Min Minist Educ Huainan 232001 Peoples R China|China Univ Min & Technol Beijing Beijing Key Lab Precise Min Intergrown Energy & R Beijing 100083 Peoples R China|China Univ Min & Technol Beijing Sch Energy & Min Engn Beijing 100083 Peoples R China;

    China Univ Min & Technol Beijing Sch Energy & Min Engn Beijing 100083 Peoples R China|Univ Sci & Technol China CAS Key Lab Mech Behav & Design Mat Hefei 230026 Anhui Peoples R China;

    China Univ Min & Technol Beijing Sch Energy & Min Engn Beijing 100083 Peoples R China;

    China Univ Min & Technol Beijing Sch Energy & Min Engn Beijing 100083 Peoples R China|Coal Min Natl Engn Technol Res Inst Huainan 232000 Peoples R China|Anhui Univ Sci & Technol State Key Lab Deep Coal Min & Environm Protect Huainan 232000 Peoples R China|Huainan Min Ind Grp Co Ltd Huainan 232001 Anhui Peoples R China;

    Coal Min Natl Engn Technol Res Inst Huainan 232000 Peoples R China;

    China Univ Min & Technol Beijing Sch Energy & Min Engn Beijing 100083 Peoples R China|Xinjiang Tianchi Energy Co Ltd Changji 831100 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号