首页> 外文期刊>Advances in civil engineering >Effective Elastic and Hydraulic Properties of Fractured Rock Masses with High Contrast of Permeability: Numerical Calculation by an Embedded Fracture Continuum Approach
【24h】

Effective Elastic and Hydraulic Properties of Fractured Rock Masses with High Contrast of Permeability: Numerical Calculation by an Embedded Fracture Continuum Approach

机译:高渗透率裂隙岩体的有效弹性和水力特性:通过嵌入式裂隙连续体方法进行的数值计算

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, the hydromechanical modeling of the fractured rock masses was conducted based on a new numerical simulation method named as embedded fracture continuum (EFC) approach. As the principal advantage, this approach allows to simplify the meshing procedure by using the simple Cartesian meshes to model the fractures that can be explicitly introduced in the porous medium based on the notion of fracture cells. These last elements represent the grid cells intersected by at least one fracture in the medium. Each fracture cell in the EFC approach present a continuum porous medium whose hydromechanical properties are calculated from ones of the matrix and ones of the intersected fractures, thanks for using the well-known solution of the joint model. The determination of the hydromechanical properties of the fracture cells as presented in this work allows to provide the theoretical base and to complete some simple approximations introduced in the literature. Through different verification tests, the capability of the developed EFC approach to model the hydromechanical behavior of fractured rock was highlighted. An analysis of different parameters notably the influence of the fracture cell size on the precision of the proposed approach was also conducted. This novel approach was then applied to investigate the effective permeability and elastic compliance tensor of a fractured rock masses taken from a real field, the Sellafield site. The comparison of the results calculated from this approach with ones conducted in the literature based on the distinct element code (UDEC) presents a good agreement. However, unlike the previous studies using UDEC, which limits only in the case of fractured rock masses without dead-end fractures, our approach allows accounting for this kind of fractures in the medium. The numerical simulations show that the dead-end fractures could have a considerable contribution on the effective compliance moduli, while their effect can be neglected to calculate the overall permeability of the of fractured rock masses.
机译:在这项工作中,基于一种称为嵌入裂缝连续体(EFC)方法的新型数值模拟方法,对裂隙岩体进行了流体力学建模。作为主要优点,此方法允许通过使用简单的笛卡尔网格来建模可以基于裂缝单元概念明确引入多孔介质中的裂缝,从而简化网格划分过程。这些最后的元素表示网格单元与介质中的至少一个裂缝相交。 EFC方法中的每个裂缝单元都提供了一种连续的多孔介质,其多孔力学介质是根据基质模型和相交的裂缝计算出的,其流体力学特性要归功于使用联合模型的众所周知的解决方案。如本文所述,确定裂缝单元的流体力学特性可以提供理论基础并完成一些文献中介绍的简单近似方法。通过不同的验证测试,强调了已开发的EFC方法对裂隙岩体的流体力学行为进行建模的能力。还对不同参数进行了分析,尤其是骨折单元尺寸对所提出方法精度的影响。然后,将这种新颖的方法应用于研究从实地Sellafield现场获取的裂隙岩体的有效渗透率和弹性柔度张量。通过这种方法计算出的结果与文献中基于独特元素代码(UDEC)进行的结果的比较表明了很好的一致性。但是,与以前使用UDEC进行的研究不同(后者仅在没有死角裂缝的岩体破裂情况下进行限制),我们的方法允许解决介质中的这种裂缝问题。数值模拟表明,尽头的裂缝可能对有效的顺应模量有很大的贡献,而忽略了它们在计算裂隙岩体整体渗透率方面的作用。

著录项

  • 来源
    《Advances in civil engineering》 |2019年第2期|7560724.1-7560724.21|共21页
  • 作者单位

    Univ Orleans, Univ Tours, INSA CVL, LaMe, F-45072 Orleans, France|Univ Transport & Commun, Civil Engn, Geotech Sect, Hanoi, Vietnam;

    Univ Orleans, Univ Tours, INSA CVL, LaMe, F-45072 Orleans, France;

    Univ Orleans, Univ Tours, INSA CVL, LaMe, F-45072 Orleans, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-18 04:26:34

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号