首页> 外文学位 >Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks.
【24h】

Porous grain model and equivalent elastic medium approach for predicting effective elastic properties of sedimentary rocks.

机译:预测沉积岩有效弹性的多孔颗粒模型和等效弹性介质方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents the results of using different inclusion and granular effective medium models and poroelasticity to predict the elastic properties of rocks with complex microstructures. Effective medium models account for the microstructure and texture of rocks, and can be used to predict the type of rock and microstructure from seismic velocities and densities. We introduce the elastic equivalency approach, using the differential effective medium model, to predict the effective elastic moduli of rocks and attenuation. We introduce the porous grain concept and develop rock physics models for rocks with microporosity. We exploit the porous grain concept to describe a variety of arrangements of uncemented and cemented grains with different degrees of hydraulic connectivity in the pore space.;We first investigate the accuracy of the differential effective medium and self-consistent estimations of elastic properties of complex rock matrix using composites as analogs. We test whether the differential effective-medium (DEM) and self-consistent (SC) models can accurately estimate the elastic moduli of a complex rock matrix and compare the results with the average of upper and lower Hashin-Shtrikman bounds. We find that when the material microstructure is consistent with DEM, this model is more accurate than both SC and the bound-average method for a variety of inclusion aspect ratios, concentrations, and modulus contrasts.;Based on these results, we next pose a question: can a theoretical inclusion model, specifically, the differential effective-medium model (DEM), be used to match experimental velocity data in rocks that are not necessarily made of inclusions (such as elastics)? We first approach this question by using empirical velocity-porosity equations as proxies for data. By finding a DEM inclusion aspect ratio (AR) to match these equations, we find that the required range of AR is remarkably narrow. Moreover, a constant AR of about 0.13 can be used to accurately match empirical relations in competent sand, shale, and quartz/calcite mixtures.;The porous grain model treats marine sediment as pack of porous elastic grains. The effective elastic moduli of the porous grains are calculated using the differential effective-medium model (DEM), where the intragranular ellipsoidal inclusions have a fixed aspect ratio and are filled with seawater. Then the elastic moduli of a pack of these spherical grains are calculated using different granular medium models and a modified (scaled to the critical porosity) upper Hashin-Shtrikman bound above the critical porosity, and modified lower and upper Hashin-Shtrikman bounds below the critical porosity. In this study, the modified lower and upper bounds were found to be appropriate for carbonate marine sediment and diatomaceous sediment, respectively.;The porous-grain model is also applied to estimate the effective elastic properties of three basic porous grain-aggregate scenarios, depending on the effective fluid connectivity of the intragranular porosity and in the grains. To determine the effective elastic properties of the saturated porous-grain material in the three different porous-grain-aggregate scenarios, we use two models: the differential effective medium approximation (DEM) and the combination DEM-Gassmann, depending on whether we wish to obtain the high frequency or the low frequency effective elastic moduli, respectively. In this approach, low and high frequency refer to fluid-related effects; but the wavelengths are still much longer than any scale of grains or intergranular pores.;A similar staged approach is used to determine the elastic moduli of a cemented porous grain aggregate at low cement concentration. This is achieved by introducing the porous grain concept into the cementation theory. Then, the combination of the cementation theory for porous grain material with a self-consistent approximation, specifically, the coherent potential approximation (CPA), allows us to estimate the elastic properties of cemented porous grain aggregates at all cement concentrations. Therefore, the porous grain model allows for (a) varying the grain contact friction coefficient gamma in the whole range from 0 to 1, for smooth to infinitely rough grains, respectively; (b) combining the self-consistent approximation with the cementation theory to account for intergranular cement volume fractions from 0 to 1; and (c) considering porous grain textures and the effect of frequency. (Abstract shortened by UMI.)
机译:本文提出了使用不同的包裹体和颗粒有效介质模型以及孔隙弹性来预测具有复杂微观结构的岩石的弹性特性的结果。有效的介质模型考虑了岩石的微观结构和质地,可用于根据地震波的速度和密度来预测岩石的类型和微观结构。我们引入弹性等效方法,使用差分有效介质模型来预测岩石的有效弹性模量和衰减。我们介绍了多孔颗粒的概念,并开发了具有微孔性的岩石的岩石物理模型。我们利用多孔颗粒的概念来描述孔隙空间中水力连通程度不同的各种非胶结和胶结颗粒的排列。;我们首先研究了差分有效介质的精度以及复杂岩石弹性特性的自洽估计使用复合材料作为类似物的矩阵。我们测试微分有效介质(DEM)模型和自洽(SC)模型是否可以准确估计复杂岩石矩阵的弹性模量,并将结果与​​Hashin-Shtrikman上下边界的平均值进行比较。我们发现,当材料的微观结构与DEM一致时,对于各种夹杂物的长宽比,浓度和模量对比,此模型比SC和边界平均方法都更准确;基于这些结果,我们接下来提出问题:是否可以使用理论上的夹杂模型,特别是微分有效介质模型(DEM)来匹配不一定由夹杂物(例如弹性体)组成的岩石中的实验速度数据?我们首先通过使用经验速度-孔隙度方程作为数据的代理来解决这个问题。通过找到与这些方程式匹配的DEM包含纵横比(AR),我们发现所需的AR范围非常窄。此外,可以使用约0.13的恒定AR来精确匹配有效砂,页岩和石英/方解石混合物中的经验关系。多孔颗粒模型将海洋沉积物视为多孔弹性颗粒的集合。使用微分有效介质模型(DEM)计算多孔颗粒的有效弹性模量,其中颗粒内椭圆形夹杂物具有固定的长宽比,并充满海水。然后,使用不同的颗粒介质模型以及在临界孔隙率上方的修改后的(按临界孔隙度定标)上限Hashin-Shtrikman边界,以及在临界值以下的修改后的下限和上限Hashin-Shtrikman边界,计算一包这些球形晶粒的弹性模量孔隙率。在这项研究中,发现修改后的下限和上限分别适用于碳酸盐海相沉积物和硅藻土沉积物;多孔颗粒模型还用于估算三种基本的多孔颗粒聚集情景的有效弹性性质,具体取决于颗粒内孔隙和颗粒的有效流体连通性。为了确定在三种不同的多孔颗粒聚集情况下饱和多孔颗粒材料的有效弹性,我们使用两种模型:微分有效介质近似(DEM)和DEM-Gassmann组合,取决于我们是否希望分别获得高频或低频有效弹性模量。在这种方法中,低频和高频指的是与流体有关的效应。但是波长仍然比任何尺度的晶粒或晶间孔长得多。;采用类似的分阶段方法来确定低水泥浓度下水泥多孔颗粒骨料的弹性模量。这是通过将多孔颗粒概念引入胶结理论中来实现的。然后,将多孔颗粒材料的胶结理论与自洽近似(特别是相干势近似(CPA))相结合,可以估算所有水泥浓度下胶结多孔颗粒聚集体的弹性。因此,多孔颗粒模型允许(a)在从0到1的整个范围内改变晶粒接触摩擦系数gamma,分别用于平滑至无限粗糙的晶粒; (b)将自洽近似与胶结理论相结合,以计算从0到1的粒间胶结物体积分数; (c)考虑多孔晶粒的质地和频率的影响。 (摘要由UMI缩短。)

著录项

  • 作者

    Ruiz, Franklin J.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Geology.;Geophysics.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 214 p.
  • 总页数 214
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:13

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号