首页> 外文期刊>Advanced Optical Materials >Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves
【24h】

Multifunctional Hybrid Metasurfaces for Dynamic Tuning of Terahertz Waves

机译:用于太赫兹波动态调谐的多功能混合超表面

获取原文
获取原文并翻译 | 示例
           

摘要

Actively tuning optical transmission through hybrid metasurfacesrnincorporated with multifunctional active media holds great promise forrnthe next generation optical devices. In the terahertz (THz) range, theyrnremain rare due to the lack of dynamic and multifunctional designs andrnmaterials. Here, a vanadium dioxide (VO_2)-based hybrid metasurface isrnproposed to present multifunctional control of THz waves via electricallyrntriggering and ultrafast optical excitation. By minimizing the thermalrnmass of VO_2 and optimizing the VO_2 patterns within two side gaps of thernasymmetric split-ring resonators, a hybrid metasurface which can tunernthe THz wave with an absolute modulation depth up to 54% and a figurernof merit as high as 138% is hereby presented. The hybrid metasurfacernachieves a switching time of 2.2 s under the electrically triggering andrnoffers an ultrafast modulation within 30 ps under the femtosecondrnpulse excitation. More interestingly, owing to the intrinsic hysteresisrnbehavior of VO_2, the hybrid metasurface exhibits distinguishingrnmultistate transmission amplitudes with a single electrical input. Inrnshort, this study paves the way for robust multifunctionality inrnelectric-controlled terahertz switching, photonic memory, andrnultrafast terahertz optics.
机译:通过结合了多功能有源介质的混合超颖表面主动调谐光传输,对下一代光学设备具有广阔的前景。在太赫兹(THz)范围内,由于缺乏动态和多功能设计以及材料,它们仍然很少见。在此,提出了基于二氧化钒(VO_2)的混合超表面,以通过电触发和超快光激发对THz波进行多功能控制。通过最小化VO_2的热质量并优化热对称开口环谐振器两个侧面间隙内的VO_2方向图,可以实现一个混合超表面,该超表面可以调谐THz波,其绝对调制深度可达54%,并且图形系数高达138%。提出了。混合超表面在电触发下可达到2.2 s的切换时间,并在飞秒脉冲激发下可在30 ps内提供超快调制。更有趣的是,由于VO_2的固有滞后行为,混合超表面在单个电输入下表现出独特的多态传输幅度。简而言之,这项研究为鲁棒的多功能电子电控太赫兹开关,光子记忆和超快太赫兹光学技术铺平了道路。

著录项

  • 来源
    《Advanced Optical Materials》 |2018年第14期|1800257.1-1800257.8|共8页
  • 作者单位

    Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026, P. R. China;

    National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026, P. R. China;

    National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026, P. R. China Quantum Materials and Photonic Technology Laboratory Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026, P. R. China;

    CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026, P. R. China;

    CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026, P. R. China;

    Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026, P. R. China CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026, P. R. China;

    National Synchrotron Radiation Laboratory University of Science and Technology of China Hefei 230026, P. R. China Quantum Materials and Photonic Technology Laboratory Synergetic Innovation Center of Quantum Information and Quantum Physics University of Science and Technology of China Hefei 230026, P. R. China CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei 230026, P. R. China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    hybrid metasurfaces; memory; multifunction; terahertz; vanadium dioxide;

    机译:混合超表面;记忆;多功能太赫兹二氧化钒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号