首页> 外文期刊>Advanced Optical Materials >Gap Plasmon of Virus-Templated Biohybrid Nanostructures Uplifting the Performance of Organic Optoelectronic Devices
【24h】

Gap Plasmon of Virus-Templated Biohybrid Nanostructures Uplifting the Performance of Organic Optoelectronic Devices

机译:病毒模板化生物喂养纳米结构的间隙等离子体升高有机光电器件性能

获取原文
获取原文并翻译 | 示例
           

摘要

Plasmonic nanostructures, which exhibit prominent localized surface plasmon resonance (LSPR) properties, are highly desirable for organic solar cells (OSC) and organic light-emitting diode (OLED) devices. In the present work, novel plasmonic bio-nanostructures are successfully synthesized via the self-densification of silver (Ag) and gold (Au) metallic nanoparticles (NPs) onto a genetically engineered M13 bacteriophage template. Owing to the unique charge selectivity of the peptide receptors on the M13 bacteriophage, the metallic NPs can be directly anchored onto the bacteriophage through charge-driven interactions without binder/surfactant. The resulting Ag/AuNP-M13 bio-nanostructures display extraordinary gap-plasmon effect as well as tremendously enhanced LSPR properties than the randomly dispersed Ag/Au NPs. The incorporation of Ag/AuNP-M13 bio-nanostructures tremendously improves the performance of both OSC and OLED devices. Specifically, a power conversion efficiency increment of 15.5% is recorded for the phage-modified OSCs; whereas an external quantum efficiency increment of 22.6% is achieved for the phage-modified OLEDs. Based on this environmentally benign virus-template approach, various plasmonic/photonic bio-nanostructures can be designed for diverse device applications.
机译:具有突出的局部表面等离子体共振(LSPR)性能的等离子体纳米结构非常适用于有机太阳能电池(OSC)和有机发光二极管(OLED)器件。在本作工作中,通过将银(Ag)和金(Au)金属纳米颗粒(NPS)的自致密化成功地合成了新的等离子体生物纳米结构在遗传工程化M13噬菌体模板上。由于肽受体对M13噬菌体上的独特电荷选择性,金属NP可以通过没有粘合剂/表面活性剂的电荷驱动的相互作用直接将其固定在噬菌体上。得到的AG / AUNP-M13生物纳米结构显示出非凡的间隙 - 等离子体效应,以及比随机分散的AG / AU NPS的巨大增强的LSPR属性。 AG / AUNP-M13生物纳米结构的掺入极大地提高了OSC和ORED器件的性能。具体地,记录噬菌体修改的OSC的功率转换效率增量15.5%;虽然噬菌体改性OLEDs实现了22.6%的外量子效率增量。基于这种环境良性病毒模板方法,可以设计各种等离子体/光子生物纳米结构用于多样化的设备应用。

著录项

  • 来源
    《Advanced Optical Materials》 |2020年第11期|1902080.1-1902080.8|共8页
  • 作者单位

    Chonbuk Natl Univ LANL CBNU Engn Inst Korea Dept Flexible & Printable Elect Jeonju 54896 South Korea;

    Pusan Natl Univ Dept Nano Fus Technol Busan 46241 South Korea;

    Chonbuk Natl Univ LANL CBNU Engn Inst Korea Dept Flexible & Printable Elect Jeonju 54896 South Korea;

    Pusan Natl Univ Res Ctr Energy Convergence & Technol Busan 46241 South Korea;

    Chonbuk Natl Univ LANL CBNU Engn Inst Korea Dept Flexible & Printable Elect Jeonju 54896 South Korea;

    Chonbuk Natl Univ LANL CBNU Engn Inst Korea Dept Flexible & Printable Elect Jeonju 54896 South Korea;

    Pusan Natl Univ Res Ctr Energy Convergence & Technol Busan 46241 South Korea;

    Pusan Natl Univ Res Ctr Energy Convergence & Technol Busan 46241 South Korea;

    Univ Tokyo Dept Mech Engn Bunkyo Ku 7-3-1 Hongo Tokyo 1138656 Japan|Pusan Natl Univ Grad Sch Chem Mat Dept Chem Educ Busan 46241 South Korea;

    Korea Inst Mat Sci Adv Funct Thin Films Dept Chang Won 641831 South Korea;

    Pusan Natl Univ Dept Nano Fus Technol Busan 46241 South Korea|Pusan Natl Univ Res Ctr Energy Convergence & Technol Busan 46241 South Korea|Pusan Natl Univ Dept Nanoenergy Engn Busan 46241 South Korea;

    Chonbuk Natl Univ LANL CBNU Engn Inst Korea Dept Flexible & Printable Elect Jeonju 54896 South Korea;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    field-enhancement; gap-plasmon effect; M13 bacteriophage; metamaterials; optoelectronics; self-assembly;

    机译:现场增强;间隙 - 等离子体效应;M13噬菌体;超材料;光电子;自组装;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号