...
首页> 外文期刊>Advanced Materials >Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers
【24h】

Creating Hierarchical Structures in Renewable Composites by Attaching Bacterial Cellulose onto Sisal Fibers

机译:通过将细菌纤维素附着在剑麻纤维上,在可再生复合材料中创建层次结构

获取原文
获取原文并翻译 | 示例

摘要

The use of hierarchy is a well-established principle in structural engineering; consider, for example, the range of length scales in the Eiffel Tower. Nature, on the other hand, maximizes the efficiency of structural materials, such as bone and wood, by defining the arrangement of the constituents at every level from the molecular to the macroscopic; in marine sponge skeletons, at least seven separate levels of hierarchy have been identified. Microstructural control lies at the heart of materials science, but the potential to create new materials using hierarchy to improve physical properties as yet remains underexploited. This paper describes a new approach to producing hierarchical composite structures from completely renewable resources. Bacterial cellulose was introduced as a nanoscale reinforcement by attaching it to the surface of natural fibers, in this case sisal. The natural fibers have micrometer-scale diameters, and although they themselves have a hierarchical internal structure, the deliberate introduction of the nanofiller provides a new means of controlling their interaction with and the behavior of the matrix. The modified sisal fibers were incorporated into a bioderived polymer matrix, poly(L-lactic acid) (PLLA), to obtain a new class of hierarchical composite that is both derived from renewable resources and biodegradable. The attachment approach facilitates modification of the fiber surface and avoids the problems commonly associated with agglomeration and dispersion of nanofillers; the result is a rise in interfacial adhesion to the polymer matrix, and an associated improvement in the performance of the composite. The effects of modifying sisal fibers, both in their natural state (Sisal-N) and after extraction with acetone (Sisal-A), were assessed qualitatively by SEM, and quantitatively by single-fiber tensile and pull-out (interfacial shear strength) tests. The hierarchical-composite performance was determined using compression-molded samples loaded in tension, parallel (0°) and perpendicular (90°) to the primary reinforcing fibers; the response to water immersion was also explored.
机译:层次结构的使用是结构工程中公认的原则。例如,考虑艾菲尔铁塔中的长度刻度范围。另一方面,大自然通过定义从分子到宏观的各个层次上的成分排列,来最大化骨骼和木材等结构材料的效率;在海洋海绵骨架中,至少确定了七个单独的层次结构。微观结构控制是材料科学的核心,但利用层次结构创建新材料以改善物理性能的潜力至今仍未得到充分利用。本文介绍了一种利用完全可再生资源生产分层复合结构的新方法。通过将细菌纤维素附着到天然纤维的表面(在此情况下为剑麻),将其作为纳米级增强剂引入。天然纤维具有微米级的直径,尽管它们本身具有分层的内部结构,但故意引入纳米填料提供了一种控制其与基质相互作用和行为的新手段。将改性的剑麻纤维掺入生物衍生的聚合物基体聚(L-乳酸)(PLLA)中,从而获得一类新型的分层复合材料,该复合材料既可再生资源又可生物降解。附着方法有助于纤维表面的改性,并避免了通常与纳米填料的团聚和分散有关的问题。结果是增加了与聚合物基体的界面粘合力,并提高了复合材料的性能。通过SEM定性评估天然状态(Sisal-N)和丙酮提取(Sisal-A)后的剑麻纤维的改性效果,并通过单纤维拉伸和拉拔(界面剪切强度)进行定量评估测试。使用压缩成型的样品以拉伸,平行于主增强纤维(0°)和垂直(90°)的方式测定分层复合材料的性能;还探讨了对水浸的反应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号