首页> 外文期刊>Advanced Materials >100 m Long Thermally Drawn Supercapacitor Fibers with Applications to 3D Printing and Textiles
【24h】

100 m Long Thermally Drawn Supercapacitor Fibers with Applications to 3D Printing and Textiles

机译:100米长的热绘制超级电容器纤维,应用于3D印刷和纺织品

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Supercapacitor fibers, with short charging times, long cycle lifespans, and high power densities, hold promise for powering flexible fabric-based electronics. To date, however, only short lengths of functioning fiber supercapacitors have been produced. The primary goal of this study is to introduce a supercapacitor fiber that addresses the remaining challenges of scalability, flexibility, cladding impermeability, and performance at length. This is achieved through a top-down fabrication method in which a macroscale preform is thermally drawn into a fully functional energy-storage fiber. The preform consists of five components: thermally reversible porous electrode and electrolyte gels; conductive polymer and copper microwire current collectors; and an encapsulating hermetic cladding. This process produces 100 m of continuous functional supercapacitor fiber, orders of magnitude longer than any previously reported. In addition to flexibility (5 mm radius of curvature), moisture resistance (100 washing cycles), and strength (68 MPa), these fibers have an energy density of 306 mu Wh cm(-2) at 3.0 V and approximate to 100% capacitance retention over 13 000 cycles at 1.6 V. To demonstrate the utility of this fiber, it is machine-woven and used as filament for 3D printing.
机译:具有短充电时间,长周期寿命和高功率密度的超级电容器纤维,保持了柔性织物的电子设备的承诺。然而,迄今为止,已经产生了只有短长度的功能性纤维超级电容器。本研究的主要目标是引入一种超级电容器纤维,该纤维解决了可扩展性,灵活性,包层不可渗透性和长度的性能的剩余挑战。这是通过自上而下的制造方法来实现的,其中宏观预制件热吸入到完全功能的能量 - 存储光纤中。预制件由五个组分组成:热可逆多孔电极和电解质凝胶;导电聚合物和铜微线集电器;和一种包封的气密包层。该方法产生100米的连续功能超级电容器纤维,比先前报道的数量级长。除了柔韧性(曲率半径5 mm半径)外,耐湿性(100次洗涤循环)和强度(68MPa),这些纤维的能量密度为306μm(-2),3.0 V,近似为100% 1.6 V的电容保持超过13 000周期。为了证明这种纤维的效用,它是机器编织的,用作3D打印的长丝。

著录项

  • 来源
    《Advanced Materials》 |2020年第49期|2004971.1-2004971.9|共9页
  • 作者单位

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA|Kyung Hee Univ Dept Plant & Environm New Resources Yongin 446701 Gyeonggi Do South Korea;

    Adv Funct Fabr Amer 12 Emily St Cambridge MA 02139 USA;

    Adv Funct Fabr Amer 12 Emily St Cambridge MA 02139 USA;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Mat Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Chem Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Dept Mat Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    Adv Funct Fabr Amer 12 Emily St Cambridge MA 02139 USA;

    Dept Phys 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Inst Soldier Nanotechnol 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA;

    MIT Res Lab Elect 77 Massachusetts Ave Cambridge MA 02139 USA|Adv Funct Fabr Amer 12 Emily St Cambridge MA 02139 USA|MIT Dept Mat Sci & Engn 77 Massachusetts Ave Cambridge MA 02139 USA|MIT Inst Soldier Nanotechnol 77 Massachusetts Ave Cambridge MA 02139 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    3D printing; energy#8208; storage textiles; machine weaving; multimaterial thermal drawing; porous electrodes; supercapacitor fibers; thermally reversible gels;

    机译:3D打印;储能纺织品;机械编织;多维热拉伸;多孔电极;超级电容器纤维;热可逆凝胶;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号