...
首页> 外文期刊>Advanced Materials >Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO_2 Electroreduction and High-Performance Zn-CO_2 Batteries
【24h】

Gas Diffusion Strategy for Inserting Atomic Iron Sites into Graphitized Carbon Supports for Unusually High-Efficient CO_2 Electroreduction and High-Performance Zn-CO_2 Batteries

机译:用于将原子钢部位插入石墨化碳的气体扩散策略对异常高效的CO_2电气和高性能ZN-CO_2电池的石墨碳支撑件

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Emerging single-atom catalysts (SACs) hold great promise for CO2 electroreduction (CO2ER)(,) but the design of highly active and cost-efficient SACs is still challenging. Herein, a gas diffusion strategy, along with one-step thermal activation, for fabricating N-doped porous carbon polyhedrons with trace isolated Fe atoms (Fe1NC) is developed. The optimized Fe1NC/S-1-1000 with atomic Fe-N-3 sites supported by N-doped graphitic carbons exhibits superior CO2ER performance with the CO Faradaic efficiency up to 96% at -0.5 V, turnover frequency of 2225 h(-1), and outstanding stability, outperforming almost all previously reported SACs based on N-doped carbon supported nonprecious metals. The observed excellent CO2ER performance is attributed to the greatly enhanced accessibility and intrinsic activity of active centers due to the increased electrochemical surface area through size modulation and the redistribution of doped N species by thermal activation. Experimental observations and theoretical calculations reveal that the Fe-N-3 sites possess balanced adsorption energies of *COOH and *CO intermediates, facilitating CO formation. A universal gas diffusion strategy is used to exclusively yield a series of dimension-controlled carbon-supported SACs with single Fe atoms while a rechargeable Zn-CO2 battery with Fe1NC/S-1-1000 as cathode is developed to deliver a maximal power density of 0.6 mW cm(-2).
机译:新兴单原子催化剂(SACS)对二氧化碳电气(CO2er)(,)具有极大的承诺,但高活跃和成本高效的囊仍处于挑战性。在此,开发了一种用于制造具有痕量分离的Fe原子(Fe1NC)的n掺杂的多孔碳多叠镍的气体扩散策略以及一步热激活。具有N掺杂石墨碳的原子Fe-N-3位点的优化Fe1NC / S-1-1000表现出优越的CO2er性能,CO Farada效率高达96%,在-0.5 V,周转频率为2225小时(-1 )和出色的稳定性,优于基于N-掺杂碳的非焦质金属的几乎所有先前报告的囊。所观察到的优异的Co2er性能归因于由于通过尺寸调节和通过热激活的掺杂N种的电化学表面积增加,因此由于电化学表面积增加以及掺杂N物种的再分布而归因于活性中心的大大增强的可访问性和内在活性。实验观察和理论计算表明,Fe-N-3位点具有* CoOH和* CO中间体的平衡吸附能量,促进CO形成。通用气体扩散策略用于专门地产生一系列具有单架Fe原子的尺寸控制的碳负载的囊,而具有作为阴极的可充电Zn-Co2电池,以提供最大功率密度0.6 mw cm(-2)。

著录项

  • 来源
    《Advanced Materials》 |2020年第29期|2002430.1-2002430.9|共9页
  • 作者单位

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Wuhan Univ Technol Sch Mat Sci & Engn Res & Testing Ctr Mat Wuhan 430070 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China;

    Zhejiang Univ Sch Mat Sci & Engn State Key Lab Silicon Mat Hangzhou 310027 Peoples R China;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China|Inst Zhejiang Univ Quzhou Quzhou Peoples R China;

    Univ New South Wales Sch Chem Engn Sydney NSW 2052 Australia;

    Zhejiang Univ Coll Chem & Biol Engn Key Lab Biomass Chem Engn Minist Educ Hangzhou 310027 Peoples R China|Inst Zhejiang Univ Quzhou Quzhou Peoples R China|Zhejiang Univ Ningbo Res Inst Ningbo 315100 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    atomic Fe-N-3 sites; CO2 electroreduction; dimension-controlled nanocarbons; gas diffusion strategy; Zn-CO2 batteries;

    机译:原子Fe-N-3位点;CO2电荷;尺寸控制纳米碳;气体扩散策略;Zn-Co2电池;

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号