首页> 外文期刊>Advanced Materials >Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet)
【24h】

Magnetically Actuated Patterns for Bioinspired Reversible Adhesion (Dry and Wet)

机译:用于生物启发的可逆粘附力(干和湿)的磁驱动模式

获取原文
获取原文并翻译 | 示例
           

摘要

Over the last decade the unique "strong but reversible" characteristics of gecko's and tree frog's adhesive pads have been intensively investigated both in the natural systems and artificial mimics. Whereas adhesive strength in the natural systems has been matched and even surpassed with synthetic micro and nanostructured surfaces, strategies to effectively switch between adhesive and non adhesive states, drastically or gradually, are still scarce and limited either in performance or by the complexity of the preparation method. Reversibility in patterned adhesives relies on a significant surface pattern reorganisation via application of an external stimulus. In artificial systems this has been achieved by temperature changes using patterns of responsive polymer materials (shape memory polymers and liquid crystalline polymers or by mechanical stretching of wrinkled patterns supported by elastomeric films. Switching adhesion with temperature based methods is slow and cannot be tuned. Adhesion changes by mechanical forces only work on stretchable films and the principle is not applicable when these are supported by rigid solids. Methods for reversible and tunable adhesion controlled by non-contact external stimuli (temperature, light, etc.) remain a scientific and technical challenge.
机译:在过去的十年中,已经在自然系统和人工模拟物中对壁虎和树蛙的粘合垫的独特“强而可逆”的特性进行了深入研究。尽管天然系统中的粘合强度已经达到甚至超过了合成的微米和纳米结构表面,但是,无论是剧烈还是逐渐有效地在粘合状态和非粘合状态之间有效切换的策略仍然很少,并且在性能或制备复杂性方面受到限制方法。图案化粘合剂的可逆性依赖于通过施加外部刺激而进行的明显的表面图案重组。在人造系统中,这是通过使用响应性聚合物材料(形状记忆聚合物和液晶聚合物)的图案进行温度变化或通过机械拉伸由弹性体薄膜支撑的起皱图案来实现的。使用基于温度的方法切换粘合力很慢且无法调整。机械力的改变仅作用于可拉伸薄膜,而当这些薄膜由刚性固体支撑时,该原理就不适用。通过非接触外部刺激(温度,光线等)控制可逆和可调粘合力的方法仍然是科学和技术挑战。

著录项

  • 来源
    《Advanced Materials》 |2014年第5期|775-779|共5页
  • 作者单位

    Max-Planck Institut fuer Polymerforschung Ackermannweg, 10. 55128, Mainz, Germany;

    Institute of Physics University Mainz Staudingerweg 7, 55099, Mainz, Germany;

    Max-Planck Institut fuer Polymerforschung Ackermannweg, 10. 55128, Mainz, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号