首页> 外文期刊>Advanced Materials >Large-Scale Assembly of Single Nanowires through Capillary-Assisted Dielectrophoresis
【24h】

Large-Scale Assembly of Single Nanowires through Capillary-Assisted Dielectrophoresis

机译:单纳米线的大规模组装通过毛细管辅助电泳

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Semiconducting nanowires (NWs) are 3D nanoscale building blocks with promising applications in, for example, field-effect transistors (FETs), biosensors, and optoelectronic components. The fabrication of semiconducting NWs, synthesized by a bottom-up approach, has made impressive progress toward providing high-quality nanostructures made in tunable materials and heterostructures. However, postgrowth NW manipulation and positioning through a generic, large-scale alignment method remains a challenge in envisioning NW-based devices as credible commercial products. Different techniques, such as Langmuir-Blodgett deposition, dry transfer printing, and capillary force assembly, have been proposed. However, these methods cannot easily accomplish single-NW alignment and precise positioning without a certain degree of fabrication complexity, or the use of high-resolution patterning technique (electron-beam lithography) that is time-consuming and cost-ineffective, making the process difficult to adapt batch fabrication. Because of its potential to overcome these limitations, dielectrophoretic (DEP) assembly is receiving increasing attention. Smith et al. showed that a nonuniform electric field applied between interdigitated electrodes can induce significant polarization of dielectric nanostructures. The resulting DEP force allows the NWs moving in the solution to overcome other forces (e.g., hydrodynamic drag, gravity, electrothermal, intraparticle, and surface-particle adhesive forces) and to localize on the electrodes at specific predefined locations. More recent studies have advanced the DEP technique by improving both physical understanding and yield. However, some key issues remains to be managed in a simple way, in terms of: (ⅰ) improving the NW concentration in the DEP-attracting region, and (ⅱ) controlling the hydrodynamic forces exerted on the NWs while the solvent is dried.
机译:半导体纳米线(NW)是3D纳米级构建基块,在例如场效应晶体管(FET),生物传感器和光电组件中具有广阔的应用前景。通过自下而上的方法合成的半导体NW的制造在提供由可调谐材料和异质结构制成的高质量纳米结构方面取得了令人瞩目的进展。然而,在将基于NW的设备设想为可靠的商业产品时,通过通用的大规模对准方法进行的生长后NW操纵和定位仍然是一个挑战。已经提出了不同的技术,例如Langmuir-Blodgett沉积,干转移印刷和毛细管力组装。但是,这些方法在没有一定程度的制造复杂性或使用费时且成本低廉的高分辨率图案化技术(电子束光刻)的情况下,无法轻松完成单NW对准和精确定位。难以适应批量生产。由于其克服这些局限性的潜力,介电泳(DEP)组装受到越来越多的关注。史密斯等。结果表明,在叉指电极之间施加的不均匀电场会引起介电纳米结构的明显极化。产生的DEP力使NW在溶液中移动以克服其他力(例如流体动力阻力,重力,电热力,颗粒内和表面颗粒粘附力)并位于电极上特定的预定位置。最近的研究通过改善物理理解和产量提高了DEP技术。但是,一些关键问题仍然需要以简单的方式进行管理,包括:(ⅰ)改善DEP吸引区的NW浓度,以及(ⅱ)控制溶剂干燥时施加在NW上的流体动力。

著录项

  • 来源
    《Advanced Materials》 |2015年第7期|1268-1273|共6页
  • 作者单位

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France ,IUT Toulon VAR, Toulon, France;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France ,CEA Tech, Toulouse, France;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France ,CBPF, Rua Doutor Xavier Sigaud 150- Urca, Rio de Janeiro 22290-180, Brazil;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France ,Frey Initiative Research Unit, RIKEN QBiC, Kobe, Japan;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, INSA, LAAS F-31400, Toulouse, France;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France;

    CNRS, LAAS 7 avenue du colonel Roche F-31400, Toulouse, France ,Univ de Toulouse, LAAS F-31400, Toulouse, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号