...
首页> 外文期刊>Advanced Materials >Anisotropic, Transparent Films with Aligned Cellulose Nanofibers
【24h】

Anisotropic, Transparent Films with Aligned Cellulose Nanofibers

机译:取向纤维素纳米纤维的各向异性透明薄膜

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Transparent films or substrates are ubiquitously used in photonics and optoelectronics, with glass and plastics as traditional choice of materials. Transparent films made of cellulose nanofibers are reported recently. However, all these films are isotropic in nature. This work, for the first time, reports a remarkably facile and effective approach to fabricating anisotropic transparent films directly from wood. The resulting films exhibit an array of exceptional optical and mechanical properties. The well-aligned cellulose nanofibers in natural wood are maintained during delignification, leading to an anisotropic film with high transparency (approximate to 90% transmittance) and huge intensity ratio of transmitted light up to 350%. The anisotropic film with well-aligned cellulose nanofibers has a mechanical tensile strength of up to 350 MPa, nearly three times of that of a film with randomly distributed cellulose nanofibers. Atomistic mechanics modeling further reveals the dependence of the film mechanical properties on the alignment of cellulose nanofibers through the film thickness direction. This study also demonstrates guided liquid transport in a mesoporous, anisotropic wood film and its possible application in enabling new nanoelectronic devices. These unique and highly desirable properties of the anisotropic transparent film can potentially open up a range of green electronics and nanofluidics.
机译:透明薄膜或基板普遍用于光子学和光电子学,玻璃和塑料是传统的材料选择。最近报道了由纤维素纳米纤维制成的透明膜。但是,所有这些膜本质上都是各向同性的。这项工作首次报道了一种非常简便有效的方法,可以直接从木材中制造各向异性透明薄膜。所得膜表现出一系列优异的光学和机械性能。天然木材中的对齐良好的纤维素纳米纤维在脱木素过程中得以保持,从而形成了一种各向异性膜,该膜具有高透明度(约90%的透射率)和高达350%的巨大透射光强度比。具有良好排列的纤维素纳米纤维的各向异性膜的机械拉伸强度高达350 MPa,几乎是具有随机分布的纤维素纳米纤维的膜的机械拉伸强度的三倍。原子力学建模进一步揭示了膜机械性能对通过膜厚度方向的纤维素纳米纤维排列的依赖性。这项研究还证明了介孔各向异性木质膜中的液体引导传输及其在实现新型纳米电子器件中的可能应用。各向异性透明膜的这些独特且非常令人希望的特性可以潜在地开发出一系列绿色电子和纳米流体。

著录项

  • 来源
    《Advanced Materials》 |2017年第21期|1606284.1-1606284.8|共8页
  • 作者单位

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

    Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA;

    Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA;

    Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA;

    Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号