...
首页> 外文期刊>Advanced Materials >Synergistic Gating of Electro-lono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity
【24h】

Synergistic Gating of Electro-lono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity

机译:电独立的光敏二维硫族化物神经递质的协同门控:赫比和稳态突触代谢的共存。

获取原文
获取原文并翻译 | 示例
           

摘要

Emulation of brain-like signal processing with thin-film devices can lay the foundation for building artificially intelligent learning circuitry in future. Encompassing higher functionalities into single artificial neural elements will allow the development of robust neuromorphic circuitry emulating biological adaptation mechanisms with drastically lesser neural elements, mitigating strict process challenges and high circuit density requirements necessary to match the computational complexity of the human brain. Here, 2D transition metal di-chalcogenide (MoS2) neuristors are designed to mimic intracellular ion endocytosis-exocytosis dynamicseurotransmitter-release in chemical synapses using three approaches: (i) electronic-mode: a defect modulation approach where the traps at the semiconductor-dielectric interface are perturbed; (ii) ionotronic-mode: where electronic responses are modulated via ionic gating; and (iii) photoactive-mode: harnessing persistent photoconductivity or trap-assisted slow recombination mechanisms. Exploiting a novel multigated architecture incorporating electrical and optical biases, this incarnation not only addresses different charge-trapping probabilities to finely modulate the synaptic weights, but also amalgamates neuromodulation schemes to achieve plasticity of plasticity-metaplasticity via dynamic control of Hebbian spike-time dependent plasticity and homeostatic regulation. Coexistence of such multiple forms of synaptic plasticity increases the efficacy of memory storage and processing capacity of artificial neuristors, enabling design of highly efficient novel neural architectures.
机译:用薄膜设备模拟类脑信号处理可以为将来构建人工智能学习电路奠定基础。将更高的功能包含到单个人工神经元中将允许开发健壮的神经形态电路,以大大减少神经元的方式模拟生物适应机制,从而减轻了严格的过程挑战和与人脑的计算复杂度相匹配的高电路密度要求。在这里,二维过渡金属双硫属元素化物(MoS2)神经元被设计为使用三种方法模拟化学突触中的胞内离子内吞-胞吐动力学/神经递质释放:(i)电子模式:一种缺陷调制方法,其中半导体的陷阱被捕获-介电界面受到干扰; (ii)电离模式:通过离子门控调节电子响应; (iii)光敏模式:利用持久的光电导或陷阱辅助的慢速重组机制。该化身利用结合了电和光偏置的新颖的多重体系结构,不仅解决了不同的电荷捕获概率以精细地调节突触权重,还合并了神经调节方案,以通过动态控制Hebbian峰值时间相关可塑性实现可塑性-可塑性。和稳态调节。这种多种形式的突触可塑性的共存提高了人工神经敏元件的记忆存储和处理能力,从而可以设计出高效的新型神经结构。

著录项

  • 来源
    《Advanced Materials》 |2018年第25期|1800220.1-1800220.9|共9页
  • 作者单位

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Elect & Elect Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

    Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    2D chalcogenides; associative learning; Hebbian synaptic plasticity; homeostatic regulation; neuromorphic computing;

    机译:二维硫属元素化物;联想学习;赫比突触可塑性;稳态调节;神经形态计算;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号