首页> 外文期刊>Advanced Materials >Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self-Assembly at the Nanoscale
【24h】

Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self-Assembly at the Nanoscale

机译:多层多组分无机超材料:内在驱动的纳米自组装。

获取原文
获取原文并翻译 | 示例
       

摘要

Increasingly intricate in their composition and structural organization, hierarchical multicomponent metamaterials with nonlinear spatially reconfigurable functionalities challenge the intrinsic constraints of natural materials, revealing tremendous potential for the advancement of biochemistry, nanophotonics, and medicine. Recent breakthroughs in high-resolution nanofabrication utilizing ultranarrow, precisely controlled ion or laser beams have enabled assembly of architectures of unprecedented structural and functional complexity, yet costly, time- and energy-consuming high-resolution sequential techniques do not operate effectively at industry-required scale. Inspired by the fictional Baron Munchausen's fruitless attempt to pull himself up, it is demonstrated that metamaterials can undergo intrinsically driven self-assembly, metaphorically pulling themselves up into existence. These internal drivers hold a key to unlocking the potential of metamaterials and mapping a new direction for the large-area, cost-efficient self-organized fabrication of practical devices. A systematic exploration of these efforts is presently missing, and the driving forces governing the intrinsically driven self-assembly are yet to be fully understood. Here, recent progress in the self-organized formation and self-propelled growth of complex hierarchical multicomponent metamaterials is reviewed, with emphasis on key principles, salient features, and potential limitations of this family of approaches. Special stress is placed on self-assembly driven by plasma, current in liquid, ultrasonic, and similar highly energetic effects, which enable self-directed formation of metamaterials with unique properties and structures.
机译:具有非线性空间可重构功能的分级多组分超材料在其组成和结构组织上越来越复杂,挑战了天然材料的固有限制,揭示了生物化学,纳米光子学和医学发展的巨大潜力。利用超细,精确控制的离子束或激光束进行的高分辨率纳米加工的最新突破,使组装具有前所未有的结构和功能复杂性的体系结构成为可能,但昂贵,耗时且耗能的高分辨率顺序技术无法满足行业需求规模。受到虚构的男爵·蒙森豪森(Baron Munchausen)徒劳无功的企图的鼓舞,事实证明,超材料可以经历内在驱动的自组装,从而隐喻地将自身提升为存在。这些内部驱动力是释放超材料潜力的关键,并为大面积,经济高效的自组织制造实用设备绘制了新的方向。目前缺少对这些努力的系统探索,并且控制内在驱动的自组装的驱动力还有待充分理解。在此,对复杂的分层多组分超材料的自组织形成和自驱动生长的最新进展进行了回顾,重点是该方法族的关键原理,显着特征和潜在局限性。等离子体,液体中的电流,超声波和类似的高能效应会导致特殊的应力作用于自组装,这使得具有独特特性和结构的超材料的自定向形成成为可能。

著录项

  • 来源
    《Advanced Materials》 |2018年第2期|1702226.1-1702226.32|共32页
  • 作者单位

    Nanyang Technol Univ, NIE, Plasma Sources & Applicat Ctr, Singapore 637616, Singapore|Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia;

    Queensland Univ Technol, Sch Chem Phys & Mech Engn, Brisbane, Qld 4000, Australia;

    George Washington Univ, Mech & Aerosp Engn, Washington, DC 20052 USA;

    Nanyang Technol Univ, NIE, Plasma Sources & Applicat Ctr, Singapore 637616, Singapore;

    Univ Technol Sydney, Sch Math & Phys Sci, Sydney, NSW 2007, Australia;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    metamaterials; nanotechnology; self-assembly;

    机译:超材料;纳米技术;自组装;
  • 入库时间 2022-08-17 13:43:01

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号