首页> 外文期刊>Advanced Materials >Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes
【24h】

Bulk Nanostructured Materials Design for Fracture-Resistant Lithium Metal Anodes

机译:耐断裂锂金属阳极的体纳米结构材料设计

获取原文
获取原文并翻译 | 示例
           

摘要

Li metal is an ideal anode for next-generation batteries because of its high theoretical capacity and low potential. However, the unevenly distributed stress in Li metal anodes (LMAs) induced by volume fluctuation may cause the electrode to fracture easily, especially during high-rate plating/stripping processes. Here fracture-resistant LMAs using the concept of bulk nanostructured materials are designed via a metallurgical process. In bulk nanostructured Li (BNL), ionic conducting phases exist at grain boundaries, which promote Li+ transport. The refined Li grain size and precipitation hardening in BNL enhances the mechanical strength and fatigue endurance, alleviating the unevenly distributed stress and preventing electrode pulverization. Density functional theory is used to investigate the binding energy between Li and various kinds of oxides and SiO2 is found to be optimal additive among screened oxides. BNL has 91% of the theoretical capacity of Li metal. In full cells with BNL anode, LiFePO4 could deliver capacity of 90 mAh g(-1) at 10C, an order of magnitude higher than that in full cells with Li foil anode. This strategy is expected to pave the way for fracture-resistant LMAs in high-rate cycling with maximum capacity.
机译:锂金属由于其高理论容量和低电势,因此是下一代电池的理想阳极。但是,由体积波动引起的Li金属阳极(LMA)中应力的不均匀分布可能导致电极容易断裂,尤其是在高速率电镀/剥离过程中。在这里,采用整体纳米结构材料概念的抗断裂LMA是通过冶金工艺设计的。在块状纳米Li(BNL)中,离子导电相存在于晶界,从而促进了Li +的传输。 BNL中精炼的锂晶粒尺寸和沉淀硬化增强了机械强度和疲劳强度,减轻了应力不均匀分布并防止了电极粉碎。利用密度泛函理论研究了Li与各种氧化物之间的结合能,发现SiO2是筛选氧化物中的最佳添加剂。 BNL的理论容量为Li金属的91%。在具有BNL阳极的全电池中,LiFePO4在10C时可提供90 mAh g(-1)的容量,比具有Li箔阳极的全电池的容量高一个数量级。预期该策略将为最大容量的高速率循环中的抗断裂LMA铺平道路。

著录项

  • 来源
    《Advanced Materials》 |2019年第15期|1807585.1-1807585.7|共7页
  • 作者单位

    Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China;

    Chongqing Univ, Coll Aerosp Engn, Chongqing 400044, Peoples R China;

    Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China;

    Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China;

    Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China;

    Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Minist Educ,Sch Chem Engn & Technol, State Key Lab Chem Engn,Key Lab Green Chem Techno, Tianjin 300072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bulk nanostructured materials; fracture-resistant; Li metal anodes; maximum capacity; rate capability;

    机译:块状纳米结构材料;抗断裂;锂金属阳极;最大容量;倍率能力;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号