...
首页> 外文期刊>Advanced Functional Materials >Layered Double Hydroxide Nano- and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-Ion Battery Electrodes
【24h】

Layered Double Hydroxide Nano- and Microstructures Grown Directly on Metal Substrates and Their Calcined Products for Application as Li-Ion Battery Electrodes

机译:直接在金属基质及其煅烧产物上直接生长的层状双氢氧化物纳米结构和微结构,用作锂离子电池电极

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Layered double hydroxide (LDH) nano- and microstructures with controllable size and morphology have been fabricated on "bivalent metal" substrates such as zinc and copper by a one-step, room-temperature process, in which metal substrates act as both reactants and supports. By manipulating the concentration of NH_3 · H_2O, the thickness and lateral size of the LDH materials can be tuned from several tens of nanometers to several hundreds of nanometers and from several hundreds of nanometers to several micrometers, respectively. This method is general and may be readily extended to any other alkali-resisted substrate coated with Zn and Cu. As an example, Zn-covered stainless steel foil has been shown to be effective for the growth of a Zn-Al LDH film. After calcinating the as-grown LDH at high temperature (650 ℃) in argon gas, a ZnO/ZnAl_2O_4 porous nanosheet film is obtained, which is then directly used for the first time as the anode material for Li-ion batteries with the operating voltage window of 0.05-2.5 V (vs. Li). The result demonstrates that ZnO/ZnAl_2O_4 has higher discharge and charge capacities and considerably better cycling stability compared to pure ZnO (Li insertion/extraction rate: 200 or 500 mAg~(-1)). The improved electrochemical performance can be ascribed to the buffering effect of the inactive matrix ZnAl_2O_4 by relieving the stress caused by the volume change during charge-discharge cycling. This work represents a successful example for the development of promising ZnO-based anode materials for Li-ion batteries.
机译:已经通过一步式室温工艺在“二价金属”基底(例如锌和铜)上制造了尺寸和形态可控的层状双氢氧化物(LDH)纳米结构和微观结构,其中金属基底既充当反应物又充当载体。通过控制NH_3·H_2O的浓度,LDH材料的厚度和横向尺寸可以分别从几十纳米调整到几百纳米,从几百纳米调整到几微米。该方法是通用的,并且可以容易地扩展到涂覆有Zn和Cu的任何其他耐碱基材。例如,已证明覆盖锌的不锈钢箔对于生长Zn-Al LDH膜是有效的。在高温(650℃)下于氩气中煅烧所生长的LDH后,获得ZnO / ZnAl_2O_4多孔纳米片膜,然后将其首次直接用作工作电压为锂离子电池的负极材料0.05-2.5 V(相对于Li)的窗口。结果表明,与纯ZnO相比,ZnO / ZnAl_2O_4具有更高的放电和充电容量,循环稳定性也更好(Li插入/提取速率:200或500 mAg〜(-1))。通过减轻充放电循环过程中体积变化所引起的应力,可将改善的电化学性能归因于惰性基质ZnAl_2O_4的缓冲作用。这项工作代表了开发有前景的用于锂离子电池的基于ZnO的负极材料的成功实例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号