...
首页> 外文期刊>Advanced Functional Materials >Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces
【24h】

Spatiotemporal Control over Molecular Delivery and Cellular Encapsulation from Electropolymerized Micro- and Nanopatterned Surfaces

机译:时空控制从电聚合的微和纳米图案表面的分子传递和细胞封装。

获取原文
获取原文并翻译 | 示例

摘要

Bioactive, patterned micro- and nanoscale surfaces that can be spatially engineered for three-dimensional ligand presentation and sustained release of signaling molecules represent a critical advance for the development of next-generation diagnostic and therapeutic devices. Lithography is ideally suited to patterning such surfaces due to its precise, easily scalable, high-throughput nature; however, to date polymers patterned by these techniques have not demonstrated the capacity for sustained release of bioactive agents. Here a class of lithographically defined, electropolymerized polymers with monodisperse micro- and nanopatterned features capable of sustained release of bioactive drugs and proteins is demonstrated. It is shown that precise control can be achieved over the loading capacity and release rates of encapsulated agents and this aspect is illustrated using a fabricated surface releasing a model antigen (ovalbumin) and a cytokine (interleukin-2) for induction of a specific immune response. Furthermore, the ability of this technique to enable three-dimensional control over cellular encapsulation is demonstrated. The efficacy of the described approach is buttressed by its simplicity, versatility, and reproducibility, rendering it ideally suited for biomaterials engineering.
机译:可以进行空间工程化以实现三维配体呈递和信号分子持续释放的生物活性,带图案的微米和纳米级表面,代表着下一代诊断和治疗设备的发展的关键进展。光刻技术具有精确,易于扩展,高通量的特性,因此非常适合对此类表面进行构图。然而,迄今为止,通过这些技术进行图案化的聚合物尚未显示出持续释放生物活性剂的能力。在此展示了一种光刻定义的电聚合聚合物,具有单分散的微米和纳米图案特征,能够持续释放生物活性药物和蛋白质。结果表明,可以对包封剂的负载能力和释放速率进行精确控制,并且使用制造的表面释放模型抗原(卵清蛋白)和细胞因子(白介素-2)来诱导特定的免疫应答,可以说明这一方面。 。此外,证明了该技术能够对细胞封装进行三维控制的能力。所描述方法的有效性受到其简单性,多功能性和可重复性的支持,使其非常适用于生物材料工程。

著录项

  • 来源
    《Advanced Functional Materials 》 |2009年第18期| 2888-2895| 共8页
  • 作者单位

    School of Engineering and Applied Sciences Department of Biomedical Engineering Yale University, 55 Prospect St., New Haven, CT 06511 (USA);

    School of Engineering and Applied Sciences Department of Biomedical Engineering Yale University, 55 Prospect St., New Haven, CT 06511 (USA);

    School of Engineering and Applied Sciences Department of Biomedical Engineering Yale University, 55 Prospect St., New Haven, CT 06511 (USA);

    Department of Chemistry Yale University, 225 Prospect St., New Haven, CT 06511 (USA);

    School of Engineering and Applied Sciences Departments of Electrical and Applied Physics Yale University, 55 Prospect St., New Haven, CT 06511 (USA);

    Department of Chemistry &. Biochemistry Ohio University, 350W. State St., Athens, OH 45701 (USA);

    Department of Chemistry Yale University, 225 Prospect St., New Haven, CT 06511 (USA);

    School of Engineering and Applied Sciences Department of Bioengineering Harvard University, 60 Oxford St., Cambridge, MA 02138 (USA);

    School of Engineering and Applied Science Department of Chemical and Biomedical Engineering Yale University, 55 Prospect St., New Haven, CT 06511 (USA);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号