...
首页> 外文期刊>Advanced Functional Materials >Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance
【24h】

Efficiency Enhancement in Organic Photovoltaic Cells: Consequences of Optimizing Series Resistance

机译:有机光伏电池的效率增强:优化串联电阻的结果

获取原文
获取原文并翻译 | 示例

摘要

Here, means to enhance power conversion efficiency (PCE or η) in bulk-heterojunction (BHJ) organic photovoltaic (OPV) cells by optimizing the series resistance (R_s)-also known as the cell internal resistance-are studied. It is shown that current state-of-the-art BHJ OPVs are approaching the limit for which efficiency can be improved via R_s reduction alone. This evaluation addresses OPVs based on a poly(3-hexylthiophene):6,6-phenyl C_(61)-butyric acid methyl ester (P3HT:PCBM) active layer, as well as future high-efficiency OPVs (η > 10%). A diode-based modeling approach is used to assess changes in R_s. Civen that typical published P3HT:PCBM test cells have relatively small areas (~0.1 cm~2), the analysis is extended to consider efficiency losses for larger area cells and shows that the transparent anode conductivity is then the dominant materials parameter affecting R_s efficiency losses. A model is developed that uses cell sizes and anode conductivities to predict current-voltage response as a function of resistive losses. The results show that the losses due to R_s remain minimal until relatively large cell areas (>0.1 cm~2) are employed. Finally, R_s effects on a projected high-efficiency OPV scenario are assessed, based on the goal of cell efficiencies >10%. Here, R_s optimization effects remain modest; however, there are now more pronounced losses due to cell size, and it is shown how these losses can be mitigated by using higher conductivity anodes.
机译:在此,研究了通过优化串联电阻(R_s)(也称为电池内部电阻)来提高体异质结(BHJ)有机光伏(OPV)电池中功率转换效率(PCE或η)的方法。结果表明,当前最先进的BHJ OPV接近极限,仅通过降低R_s即可提高效率。该评估针对基于聚(3-己基噻吩):6,6-苯基C_(61)-丁酸甲酯(P3HT:PCBM)活性层的OPV,以及未来的高效OPV(η> 10%) 。基于二极管的建模方法用于评估R_s的变化。认为典型的已发布的P3HT:PCBM测试电池的面积相对较小(〜0.1 cm〜2),扩展了分析范围以考虑较大面积电池的效率损失,并表明透明阳极电导率是影响R_s效率损失的主要材料参数。开发了一个模型,该模型使用电池尺寸和阳极电导率来预测作为电阻损耗函数的电流-电压响应。结果表明,直到采用相对较大的单元面积(> 0.1 cm〜2),R_s引起的损耗才保持最小。最后,基于电池效率> 10%的目标,评估了R_s对预计的高效OPV情景的影响。在此,R_s优化效果保持适度;然而,由于电池尺寸的原因,现在损失更为明显,这表明如何通过使用电导率更高的阳极来减轻这些损失。

著录项

  • 来源
    《Advanced Functional Materials 》 |2010年第1期| 97-104| 共8页
  • 作者单位

    Departments of Chemistry and Materials Science and Engineering Materials Research Center and Argonne-Northwestern Solar Energy Research Center Northwestern University Evanston, IL 60208 (USA);

    rnDepartments of Chemistry and Materials Science and Engineering Materials Research Center and Argonne-Northwestern Solar Energy Research Center Northwestern University Evanston, IL 60208 (USA);

    rnDepartments of Chemistry and Materials Science and Engineering Materials Research Center and Argonne-Northwestern Solar Energy Research Center Northwestern University Evanston, IL 60208 (USA);

    rnDepartments of Chemistry and Materials Science and Engineering Materials Research Center and Argonne-Northwestern Solar Energy Research Center Northwestern University Evanston, IL 60208 (USA);

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号